Morphologie

Nous avons vu que les membres de la même classe, indépendamment de leurs habitudes d’existence, se ressemblent par le plan général de leur organisation. Cette ressemblance est souvent exprimée par le terme d’unité de type, c’est-à-dire que chez les différentes espèces de la même classe les diverses parties et les divers organes sont homologues. L’ensemble de ces questions prend le nom général de morphologie et constitue une des parties les plus intéressantes de l’histoire naturelle, dont elle peut être considérée comme l’âme. N’est-il pas très remarquable que la main de l’homme faite pour saisir, la griffe de la taupe destinée à fouir la terre, la jambe du cheval, la nageoire du marsouin et l’aile de la chauve-souris, soient toutes construites sur un même modèle et renferment des os semblables, situés dans les mêmes positions relatives ? N’est-il pas extrêmement curieux, pour donner un exemple d’un ordre moins important, mais très frappant, que les pieds postérieurs du kangouroo, si bien appropriés aux bonds énormes que fait cet animal dans les plaines ouvertes ; ceux du koala, grimpeur et mangeur de feuilles, également bien conformés pour saisir les branches ; ceux des péramèles qui vivent dans des galeries souterraines et qui se nourrissent d’insectes ou de racines, et ceux de quelques autres marsupiaux australiens, soient tous construits sur le même type extraordinaire, c’est-à-dire que les os du second et du troisième doigt sont très minces et enveloppés dans une même peau, de telle sorte qu’ils ressemblent à un doigt unique pourvu de deux griffes ? Malgré cette similitude de type, il est évident que les pieds postérieurs de ces divers animaux servent aux usages les plus différents que l’on puisse imaginer. Le cas est d’autant plus frappant que les opossums américains, qui ont presque les mêmes habitudes d’existence que certains de leurs parents australiens, ont les pieds construits sur le plan ordinaire. Le professeur Flower, à qui j’ai emprunté ces renseignements, conclut ainsi : « On peut appliquer aux faits de ce genre l’expression de conformité au type, sans approcher beaucoup de l’explication du phénomène ; » puis il ajoute : « Mais ces faits n’éveillent-ils pas puissamment l’idée d’une véritable parenté et de la descendance d’un ancêtre commun ? »

Geoffroy Saint-Hilaire a beaucoup insisté sur la haute importance de la position relative ou de la connexité des parties homologues, qui peuvent différer presque à l’infini sous le rapport de la forme et de la grosseur, mais qui restent cependant unies les unes aux autres suivant un ordre invariable. Jamais, par exemple, on n’a observé une transposition des os du bras et de l’avant-bras, ou de la cuisse et de la jambe. On peut donc donner les mêmes noms aux os homologués chez les animaux les plus différents. La même loi se retrouve dans la construction de la bouche des insectes ; quoi de plus différent que la longue trompe roulée en spirale du papillon sphinx, que celle si singulièrement repliée de l’abeille ou de la punaise, et que les grandes mâchoires d’un coléoptère ? Tous ces organes, cependant, servant à des usages si divers, sont formés par des modifications infiniment nombreuses d’une lèvre supérieure, de mandibules et de deux paires de mâchoires. La même loi règle la construction de la bouche et des membres des crustacés. Il en est de même des fleurs des végétaux.

Il n’est pas de tentative plus vaine que de vouloir expliquer cette similitude du type chez les membres d’une classe par l’utilité ou par la doctrine des causes finales. Owen a expressément admis l’impossibilité d’y parvenir dans son intéressant ouvrage sur la Nature des membres. Dans l’hypothèse de la création indépendante de chaque être, nous ne pouvons que constater ce fait en ajoutant qu’il a plu au Créateur de construire tous les animaux et toutes les plantes de chaque grande classe sur un plan uniforme ; mais ce n’est pas là une explication scientifique.

L’explication se présente, au contraire, d’elle-même, pour ainsi dire, dans la théorie de la sélection des modifications légères et successives, chaque modification étant avantageuse en quelque manière à la forme modifiée et affectant souvent par corrélation d’autres parties de l’organisation. Dans les changements de cette nature, il ne saurait y avoir qu’une bien faible tendance à modifier le plan primitif, et aucune à en transposer les parties. Les os d’un membre peuvent, dans quelque proportion que ce soit, se raccourcir et s’aplatir, ils peuvent s’envelopper en même temps d’une épaisse membrane, de façon à servir de nageoire ; ou bien, les os d’un pied palmé peuvent s’allonger plus ou moins considérablement en même temps que la membrane interdigitale, et devenir ainsi une aile ; cependant toutes ces modifications ne tendent à altérer en rien la charpente des os ou leurs rapports relatifs. Si nous supposons un ancêtre reculé, qu’on pourrait appeler l’archétype de tous les mammifères, de tous les oiseaux et de tous les reptiles, dont les membres avaient la forme générale actuelle, quel qu’ait pu, d’ailleurs, être l’usage de ces membres, nous pouvons concevoir de suite la construction homologue, des membres chez tous les représentants de la classe entière. De même, à l’égard de la bouche des insectes ; nous n’avons qu’à supposer un ancêtre commun pourvu d’une lèvre supérieure, de mandibules et de deux paires de mâchoires, toutes ces parties ayant peut-être une forme très simple ; la sélection naturelle suffit ensuite pour expliquer la diversité infinie qui existe dans la conformation et les fonctions de la bouche de ces animaux. Néanmoins, on peut concevoir que le plan général d’un organe puisse s’altérer au point de disparaître complètement par la réduction, puis par l’atrophie complète de certaines parties, par la fusion, le doublement ou la multiplication d’autres parties, variations que nous savons être dans les limites du possible. Le plan général semble avoir été ainsi en partie altéré dans les nageoires des gigantesques lézards marins éteints, et dans la bouche de certains crustacés suceurs.

Il est encore une autre branche également curieuse de notre sujet : c’est la comparaison, non plus des mêmes parties ou des mêmes organes chez les différents membres d’une même classe, mais l’examen comparé des diverses parties ou des divers organes chez le même individu. La plupart des physiologistes admettent que les os du crâne sont homologues avec les parties élémentaires d’un certain nombre de vertèbres, c’est-à-dire qu’ils présentent le même nombre de ces parties dans la même position relative réciproque. Les membres antérieurs et postérieurs de toutes les classes de vertébrés supérieurs sont évidemment homologues. Il en est de même des mâchoires si compliquées et des pattes des crustacés. Chacun sait que, chez une fleur, on explique les positions relatives des sépales, des pétales, des étamines et des pistils, ainsi que leur structure intime, en admettant que ces diverses parties sont formées de feuilles métamorphosées et disposées en spirale. Les monstruosités végétales nous fournissent souvent la preuve directe de la transformation possible d’un organe en un autre ; en outre, nous pouvons facilement constater que, pendant les premières phases du développement des fleurs, ainsi que chez les embryons des crustacés et de beaucoup d’autres animaux, des organes très différents, une fois arrivés à maturité, se ressemblent d’abord complètement.

Comment expliquer ces faits d’après la théorie des créations ? Pourquoi le cerveau est-il renfermé dans une boîte composée de pièces osseuses si nombreuses et si singulièrement conformées qui semblent représenter des vertèbres ? Ainsi que l’a fait remarquer Owen, l’avantage que présente cette disposition, en permettant aux os séparés de fléchir pendant l’acte de la parturition chez les mammifères, n’expliquerait en aucune façon pourquoi la même conformation se retrouve dans le crâne des oiseaux et des reptiles. Pourquoi des os similaires ont-ils été créés pour former l’aile et la jambe de la chauve-souris, puisque ces os sont destinés à des usages si différents, le vol et la marche ? Pourquoi un crustacé, pourvu d’une bouche extrêmement compliquée, formée d’un grand nombre de pièces, a-t-il toujours, et comme une conséquence nécessaire, un moins grand nombre de pattes ? et inversement pourquoi ceux qui ont beaucoup de pattes ont-ils une bouche plus simple ? Pourquoi les sépales, les pétales, les étamines et les pistils de chaque fleur, bien qu’adaptés à des usages si différents, sont-ils tous construits sur le même modèle ?

La théorie de la sélection naturelle nous permet, jusqu’à un certain point, de répondre à ces questions. Nous n’avons pas à considérer ici comment les corps de quelques animaux se sont primitivement divisés en séries de segments, ou en côtés droit et gauche, avec des organes correspondants, car ces questions dépassent presque la limite de toute investigation. Il est cependant probable que quelques conformations en séries sont le résultat d’une multiplication de cellules par division, entraînant la multiplication des parties qui proviennent de ces cellules. Il nous suffit, pour le but que nous nous proposons, de nous rappeler la remarque faite par Owen, c’est-à-dire qu’une répétition indéfinie de parties ou d’organes constitue le trait caractéristique de toutes les formes inférieures et peu spécialisées. L’ancêtre inconnu des vertébrés devait donc avoir beaucoup de vertèbres, celui des articulés beaucoup de segments, et celui des végétaux à fleurs de nombreuses feuilles disposées en une ou plusieurs spires ; nous avons aussi vu précédemment que les organes souvent répétés sont essentiellement aptes à varier, non seulement par le nombre, mais aussi par la forme. Par conséquent, leur présence en quantité considérable et leur grande variabilité ont naturellement fourni les matériaux nécessaires à leur adaptation aux buts les plus divers, tout en conservant, en général, par suite de la force héréditaire, des traces distinctes de leur ressemblance originelle ou fondamentale. Ils doivent conserver d’autant plus cette ressemblance que les variations fournissant la base de leur modification subséquente à l’aide de la sélection naturelle, tendent dès l’abord à être semblables ; les parties, à leur état précoce, se ressemblant et étant soumises presque aux mêmes conditions. Ces parties plus ou moins modifiées seraient sérialement homologues, à moins que leur origine commune ne fût entièrement obscurcie.

Bien qu’on puisse aisément démontrer dans la grande classe des mollusques l’homologie des parties chez des espèces distinctes, on ne peut signaler que peu d’homologies sériales telles que les valves des chitons ; c’est-à-dire que nous pouvons rarement affirmer l’homologie de telle partie du corps avec telle autre partie du même individu. Ce fait n’a rien de surprenant ; chez les mollusques, en effet, même parmi les représentants les moins élevés de la classe, nous sommes loin de trouver cette répétition indéfinie d’une partie donnée, que nous remarquons dans les autres grands ordres du règne animal et du règne végétal.

La morphologie constitue, d’ailleurs un sujet bien plus compliqué qu’il ne le paraît d’abord ; c’est ce qu’a récemment démontré M. Ray-Lankester dans un mémoire remarquable. M. Lankester établit une importante distinction entre certaines classes de faits que tous les naturalistes ont considérés comme également homologues. Il propose d’appeler structures homogènes les structures qui se ressemblent chez des animaux distincts, par suite de leur descendance d’un ancêtre commun avec des modifications subséquentes, et les ressemblances qu’on ne peut expliquer ainsi, ressemblances homoplastiques. Par exemple, il croit que le cœur des oiseaux et des mammifères est homogène dans son ensemble, c’est-à-dire qu’il provient d’un ancêtre commun ; mais que les quatre cavités du cœur sont, chez les deux classes, homoplastiques, c’est-à-dire qu’elles se sont développées indépendamment. M. Lankester allègue encore l’étroite ressemblance des parties situées du côté droit et du côté gauche du corps, ainsi que des segments successifs du même individu ; ce sont là des parties ordinairement appelées homologues, et qui, cependant, ne se rattachent nullement à la descendance d’espèces diverses d’un ancêtre commun. Les conformations homoplastiques sont celles que j’avais classées, d’une manière imparfaite, il est vrai, comme des modifications ou des ressemblances analogues. On peut, en partie, attribuer leur formation à des variations qui ont affecté d’une manière semblable des organismes distincts ou des parties distinctes des organismes, et, en partie, à des modifications analogues, conservées dans un but général ou pour une fonction générale. On en pourrait citer beaucoup d’exemples.

Les naturalistes disent souvent que le crâne est formé de vertèbres métamorphosées, que les mâchoires des crabes sont des pattes métamorphosées, les étamines et les pistils des fleurs des feuilles métamorphosées ; mais, ainsi que le professeur Huxley l’a fait remarquer, il serait, dans la plupart des cas, plus correct de parler du crâne et des vertèbres, des mâchoires et des pattes, etc., comme provenant, non pas de la métamorphose en un autre organe de l’un de ces organes, tel qu’il existe, mais de la métamorphose de quelque élément commun et plus simple. La plupart des naturalistes, toutefois, n’emploient l’expression que dans un sens métaphorique, et n’entendent point par là que, dans le cours prolongé des générations, des organes primordiaux quelconques – vertèbres dans un cas et pattes dans l’autre – aient jamais été réellement transformés en crânes ou en mâchoires. Cependant, il y a tant d’apparences que de semblables modifications se sont opérées, qu’il est presque impossible d’éviter l’emploi d’une expression ayant cette signification directe. À mon point de vue, de pareils termes peuvent s’employer dans un sens littéral ; et le fait remarquable que les mâchoires d’un crabe, par exemple, ont retenu de nombreux caractères ; qu’elles auraient probablement conservés par hérédité si elles eussent réellement été le produit d’une métamorphose de pattes véritables, quoique fort simples, se trouverait en partie expliqué.

Share on Twitter Share on Facebook