CHAPTER VIII. BOILER AND ITS APPENDAGES.—FURNACE.

The Boiler and its Appendages. — Level Gauges. — Feeding Apparatus. — Steam Gauge. — Barometer Gauge. — Safety Valves. — Self-regulating Damper. — Edelcrantz's Valve. — Furnace. — Self-consuming Furnace. — Brunton's Self-regulating Furnace. — Oldham's Modification.

(65.) The regular action of a steam engine, as well as the economy of fuel, depends in a great degree on the construction of the boiler or apparatus for generating the steam. The boiler may be conceived as a great magazine of steam for the use of the engine; and care must be taken not only that a sufficient quantity be always ready for the supply of the machine, but also that it shall be of the proper quality; that is, that its pressure shall not exceed that which is required, nor fall short of it. Precautions should, therefore, be taken that the production of steam should be exactly proportioned to the work to be done, and that the steam so produced shall be admitted to the cylinder in the same proportion.

To accomplish this, various contrivances, eminently remarkable for their ingenuity, have been resorted to, and which we shall now proceed to describe.

(d) It may be premised that boilers have been made of various figures, each having its own peculiar advantages and defects. That which possesses the greatest degree of strength, is one of the shape of a cylinder. This form was originally introduced by Oliver Evans, in the United States. It will have its entire superiority when the fire is made beneath it in a furnace of masonry. But this method is not applicable to steam boats or locomotive engines. In these instances the weight of the separate furnace is an objection; when, therefore, this form is applied in them, the fire is usually made in a chamber of cylindric shape, within the boiler, and the smoke is conveyed to the chimney by flues, which pass through the water. These flues have, in some cases, been reduced to the size of small tubes, and of this method an example will be found in a subsequent part of this work.—A. E.

(66.) Different methods have been, from time to time, suggested for indicating the level of the water in the boiler. We have already mentioned the two gauge-pipes used in the earlier steam engines (31.); and which are still generally continued. There are, however, some other methods which merit our attention.

A weight, F (fig. 32.), half immersed in the water in the boiler, is supported by a wire, which, passing steam-tight through a small hole in the top, is connected by a flexible string or chain passing over a wheel, W, with a counterpoise, A, which is just sufficient to balance F, when half immersed. If F be raised above the water, A being lighter, will no longer balance it, and F will descend, pulling up A, and turning the wheel W. If, on the other hand, F be plunged deeper in the water, A, will more than balance it, and will pull it up. So that the only position in which F and A will balance each other is when F is half immersed. The wheel W is so adjusted, that when two pins, placed on its rim, are in the horizontal position, as in fig. 32., the water is at its proper level. Consequently it follows, that if the water rise above this level, the weight F is lifted, and A falls, so that the pins P P´ come into the position in fig. 33. If, on the other hand, the level of the water falls, F falls and A rises, so that the pins P P´ assume the position in fig. 34. Thus, in general, the position of the pins P P´ becomes an indication of the quantity of water in the boiler.

Another method is to place a glass tube (fig. 35.) with one end, T, entering the boiler above the proper level, and the other end, T´, entering it below the proper level. It must be evident that the water in the tube will always stand at the same level as the water in the boiler; since the lower part has a free communication with that water, while the surface is submitted to the pressure of the same steam as the water in the boiler. This, and the last-mentioned gauge, have the advantage of addressing the eye of the engineer at once, without any adjustment; whereas the gauge cocks must be both opened, whenever the depth is to be ascertained.

These gauges, however, require the frequent attention of the engine-man; and it becomes desirable either to find some more effectual means of awakening that attention, or to render the supply of the boiler independent of any attention. In order to enforce the attention of the engine-man to replenish the boiler when partially exhausted by evaporation, a tube was sometimes inserted at the lowest level to which it was intended that the water should be permitted to fall. This tube was conducted from the boiler into the engine-house, where it terminated in a mouth-piece or whistle, so that whenever the water fell below the level at which this tube was inserted in the boiler, the steam would rush through it, and, issuing with great velocity at the mouth-piece, would summon the engineer to his duty with a call that would rouse him even from sleep.

(67.) In the most effectual of these methods, the task of replenishing the boiler should still be executed by the engineer; and the utmost that the boiler itself was made to do was to give due notice of the necessity for the supply of water. The consequence was, among other inconveniences, that the level of the water was subject to constant variation.

To remedy this, a method has been invented by which the engine is made to feed its own boiler. The pipe G´ (fig. 15.), which leads from the hot water pump H´, terminates in a small cistern, C (fig. 36.), in which the water is received. In the bottom of this cistern a valve, V, is placed, which opens upwards, and communicates with a feed-pipe, which descends into the boiler below the level of the water in it. The stem of the valve V is connected with a lever turning on the centre D, and loaded with a weight, F, dipped in the water in the boiler in a manner similar to that described in fig. 32., and balanced by a counterpoise, A, in exactly the same way. When the level of the water in the boiler falls, the float F falls with it, and, pulling down the arm E of the lever, raises the valve V, and lets the water descend into the boiler from the cistern C. When the boiler has thus been replenished, and the level raised to its former place, F will again be raised, and the valve V closed by the weight A. In practice, however, the valve V adjusts itself by means of the effect of the water on the weight F, so as to permit the water from the feeding cistern C to flow in a continued stream, just sufficient in quantity to supply the consumption from evaporation, and to maintain the level of the water in the boiler constantly the same.

By this singularly felicitous arrangement, the boiler is made to replenish itself, or, more properly speaking, it is made to receive such a supply as that it never wants replenishing, an effect which no effort of attention on the part of an engine-man could produce. But this is not the only good effect produced by this contrivance. A part of the steam which originally left the boiler, and having discharged its duty in moving the piston, was condensed and reconverted into water, and lodged by the air-pump in the hot-well (47.), is here again restored to the source from which it came, bringing back all the unconsumed portion of its heat preparatory to being once more put in circulation through the machine.

The entire quantity of hot water pumped into the cistern C is not always required for the boiler. A waste-pipe may be provided for carrying off the surplus, which may be turned to any purpose for which it may be required; or it may be discharged into a cistern to cool, preparatory to being restored to the cold cistern (fig. 12.), in case water for the supply of that cistern be not sufficiently abundant.

In cities and places in which it becomes an object to prevent the waste of water, the waste-pipes proceeding from the feed-cistern C (fig. 36.) and from the cold cistern containing the condenser and air-pump, may be conducted to a cistern A B (fig. 37.). Let C be the pipe from the feeding cistern, and D that from the cold cistern; by these pipes the waste water, from both these cisterns is deposited in A B. In the bottom of A B is a valve V, opening upwards, connected with a float F. When the quantity of water collected in the cistern A B is such that the level rises considerably, the float F is raised, and lifts the valve V, and the water flows into the main pipe, which supplies water for working the engine: G is the cold water-pump for the supply of the cold cistern.

This arrangement for saving the water discharged from the feeding and condensing cisterns has been adopted in the printing office of the Bank of Ireland, and a very considerable waste of water is thereby prevented.

(68.) It is necessary to have a ready method of ascertaining at all times the strength of the steam which is used in working the engine. For this purpose a bent tube containing mercury is inserted into some part of the apparatus which has free communication with the steam. It is usually inserted in the jacket of the cylinder (44.). Let A B C (fig. 38.) be such a tube. The pressure of the steam forces the mercury down in the leg A B, and up in the leg B C. If the mercury in both legs be at exactly the same level, the pressure of the steam must be exactly equal to that of the atmosphere; because the steam pressure on the mercury in A B balances the atmospheric pressure on the mercury in B C. If, however, the level of the mercury in B C be above the level of the mercury in B A, the pressure of the steam will exceed that of the atmosphere. The excess of its pressure above that of the atmosphere may be found by observing the difference of the levels of the mercury in the tubes B C and B A; allowing a pressure of one pound on each square inch for every two inches in the difference of the levels.

If, on the contrary, the level of the mercury in B C should fall below its level in A B, the atmospheric pressure will exceed that of the steam, and the degree or quantity of the excess may be ascertained exactly in the same way.

If the tube be glass, the difference of levels of the mercury would be visible: but it is most commonly made of iron; and in order to ascertain the level, a thin wooden rod with a float is inserted in the open end of B C; so that the portion of the stick within the tube indicates the distance of the level of the mercury from its mouth. A bulb or cistern of mercury might be substituted for the leg A B, as in the common barometer. This instrument is called the steam-gauge.

If the steam-gauge be used as a measure of the strength of the steam which presses on the piston, it ought to be on the same side of the throttle valve (which is regulated by the governor) as the cylinder; for if it were on the same side of the throttle valve with the boiler, it would not be affected by the changes which the steam may undergo in passing through the throttle valve, when partially closed by the agency of the governor.

(69.) The force with which the piston is pressed depends on two things: 1o, the actual strength of the steam which presses on it; and 2o, on the actual strength of the vapour which resists it. For although the vacuum produced by the method of separate condensation be much more perfect than what had been produced in the atmospheric engines, yet still some vapour of a small degree of elasticity is found to be raised from the hot water in the bottom of the condenser before it can be extracted by the air-pump. One of these pressures is indicated by the steam-gauge already described; but still, before we can estimate the force with which the piston descends, it is necessary to ascertain the force of the vapour which remains uncondensed, and resists the motion of the piston. Another gauge, called the barometer-gauge, is provided for this purpose. A glass tube A B (fig. 39.), more than thirty inches long, and open at both ends, is placed in an upright or vertical position, having the lower end B immersed in a cistern of mercury C. To the upper end is attached a metal tube, which communicates with the condenser, in which a constant vacuum, or rather high degree of rarefaction, is sustained. The same vacuum must, therefore, exist in the tube A B, above the level of the mercury; and the atmospheric pressure on the surface of the mercury in the cistern C will force the mercury up in the tube A B, until the column which is suspended in it is equal to the difference between the atmospheric pressure and the pressure of the uncondensed steam. The difference between the column of mercury sustained in this instrument and in the common barometer will determine the strength of the uncondensed steam, allowing a force proportional to one pound per square inch for every two inches of mercury in the difference of the two columns. In a well-constructed engine, which is in good order, there is very little difference between the altitude in the barometer-gauge and the common barometer.

To compute the force with which the piston descends, thus becomes a very simple arithmetical process. First ascertain the difference of the levels of the mercury in the steam-gauge. This gives the excess of the steam pressure above the atmospheric pressure. Then find the height of the mercury in the barometer-gauge. This gives the excess of the atmospheric pressure above the uncondensed steam. Hence, if these two heights be added together, we shall obtain the excess of the impelling force of the steam from the boiler on the one side of the piston, above the resistance of the uncondensed steam on the other side. This will give the effective impelling force. Now, if one pound be allowed for every two inches of mercury in the two columns just mentioned, we shall have the number of pounds of impelling pressure on every square inch of the piston. Then if the number of square inches in the section of the piston be found, and multiplied by the number of pounds on each square inch, the whole effective force with which it moves will be obtained.

In the computation of the power of the engine, however, all this force, thus computed, is not to be allowed as the effective working power. For it requires some force, and by no means an inconsiderable portion, to move the engine itself, even when unloaded; all this, therefore, which is spent in overcoming friction, &c. is to be left out of account, and only the balance set down as the effective working power.

From what we have stated, it appears that in order to estimate the effective force with which the piston is urged, it is necessary to refer to both the barometer and the steam-gauge. This double computation may be obviated by making one gauge serve both purposes. If the end C of the steam-gauge (fig. 38.) instead of communicating with the atmosphere, were continued to the condenser, we should have the pressure of the steam acting upon the mercury in the tube B A, and the pressure of the uncondensed vapour which resists the piston acting on the mercury in the tube B C. Hence the difference of the levels of the mercury in the tubes will at once indicate the difference between the force of the steam and that of the uncondensed vapour, which is the effective force with which the piston is urged.

(70.) To secure the boiler from accidents arising from the steam becoming too strong, a safety valve is used, similar to those described in Papin's steam engine, loaded with a weight equal to the strength which the steam is intended to have above the atmospheric pressure; for it is found expedient, even in condensing engines, to use the steam of a pressure somewhat above that of the atmosphere.

Besides this valve, another of the very opposite kind is sometimes used. Upon stopping the engine, and extinguishing the fire, it is found that the steam condensed within the boiler produces a vacuum; so that the atmosphere, pressing on the external surface of the boiler, has a tendency to crush it. To prevent this, a safety valve is provided, which opens inwards, and which being forced open by the atmospheric pressure when a vacuum is produced within, the air rushes in, and a balance is obtained between the pressures within and without.

(71.) We have already explained the manner in which the governor regulates the supply of steam from the boiler to the cylinder, proportioning the quantity to the work to be done, and thereby sustaining a uniform motion. Since, then, the consumption of steam in the engine is subject to variation, owing to the various quantities of work it may have to perform, it is evident that the production of steam in the boiler should be subject to a proportional variation. For, otherwise, one of two effects would ensue: the boiler would either fail to supply the engine with steam, or steam would accumulate in the boiler, from being produced in too great abundance, and would escape at the safety valve, and thus be wasted. In order to vary the production of steam in proportion to the demands of the engine, it is necessary to increase or mitigate the furnace, as production is to be augmented or diminished. To effect this by any attention on the part of the engine-man would be impossible; but a most ingenious method has been contrived, of making the boiler regulate itself in these respects. Let T (fig. 40.) be a tube inserted in the top of the boiler, and descending nearly to the bottom. The pressure of the steam on the surface of the water in the boiler forces water up in the tube T, until the difference of the levels is equal to the difference between the pressure of the steam in the boiler and that of the atmosphere. A weight F, half immersed in the water in the tube, is suspended by a chain which passes over the wheels P P´, and is balanced by a metal plate D, in the same manner as the float in fig. 32. is balanced by the weight A. The plate D passes through the mouth of the flue E, as it issues finally from the boiler; so that when the plate D falls, it stops the flue and thereby suspends the draught of air through the furnace, mitigates the fire, and diminishes the production of steam. If, on the contrary, the plate D be drawn up, the draught is increased, the fire rendered more effective, and the production of steam in the boiler stimulated. Now suppose that the boiler is producing steam faster than the engine consumes it, either because the load on the engine has been diminished, and therefore its consumption of steam proportionally diminished, or because the fire has become too intense. The consequence is, that the steam beginning to accumulate, will press upon the surface of the water in the boiler with increased force, and the water will rise in the tube T. The weight F will therefore be lifted, and the plate D will descend, stop the draught, mitigate the fire, and check the production of steam; and it will continue so to do, until the production of steam becomes exactly equal to the demands of the engine.

If, on the other hand, the production of steam be not equal to the wants of the machine, either because of the increased load, or the insufficiency of the fire, the steam in the boiler losing its elasticity, the surface of the water rises, not sustaining a pressure sufficient to keep it at its wonted level. Therefore, the surface in the tube T falls, and the weight F falls, and the plate D rises. The draught is thus increased, by opening the flue, and the fire rendered more intense; and thus the production of steam is stimulated, until it is sufficiently rapid for the purposes of the engine. This apparatus is called the self-acting damper.

(72.) It has been proposed to connect this damper with the safety-valve invented by the Chevalier Edelcrantz. A small brass cylinder is fixed to the boiler, and is fitted with a piston which moves in it, without much friction, and nearly steam-tight. The cylinder is closed at top, having a hole through which the piston-rod plays; so that the piston is thus prevented from being blown out of the cylinder by the steam. The side of the cylinder is pierced with small holes opening into the air, and placed at short distances above each other. Let the piston be loaded with a weight proportional to the pressure of the steam intended to be produced. When the steam has acquired a sufficient elasticity, the piston will be lifted, and steam will escape through the first hole. If the production of steam be not too rapid, and that its pressure be not increasing, the piston will remain suspended in this manner: but if it increase, the piston will be raised above the second hole, and it will continue to rise until the escape of the steam through the holes is sufficient to render the weight of the piston a counterpoise for the steam. This safety valve is particularly well adapted to cases where steam of an exactly uniform pressure is required; for the pressure must necessarily be always equal to the weight on the piston. Thus, suppose the section of the piston be equal to a square inch; if it be loaded with 10 lbs., including its own weight, the steam which will sustain it in any position in the cylinder, whether near the bottom or top, must always be exactly equal in pressure to 10 lbs. per inch. In this respect it resembles the quality already explained in the governor, and renders the pressure of the steam uniform, exactly in the same manner as the governor renders the velocity of the engine uniform.

(73.) The economy of fuel depends, in a great degree, on the construction of the furnace, independently of the effects of the arrangements we have already described.

The grate or fire-place of an ordinary furnace is placed under the boiler; and the atmospheric air passing through the ignited fuel, supplies sufficient oxygen to support a large volume of flame, which is carried by the draught into a flue, which circulates twice or oftener round the boiler, and in immediate contact with it, and finally issues into the chimney. Through this flue the flame circulates, so as to act on every part of the boiler near which the flue passes; and it is frequently not until it passes into the chimney, and sometimes not until it leaves the chimney, that it ceases to exist in the state of flame.

The dense black smoke which is observed to issue from the chimneys of furnaces is formed of a quantity of unconsumed fuel, and may be therefore considered as so much fuel wasted. Besides this, in large manufacturing towns, where a great number of furnaces are employed, it is found that the quantity of smoke which thus becomes diffused through the atmosphere, renders it pernicious to the health, and destructive to the comforts of the inhabitants.

These circumstances have directed the attention of engineers to the discovery of means whereby this smoke or wasted fuel may be consumed for the use of the engine itself, or for whatever use the furnace may be applied to. The most usual method of accomplishing this is by so arranging matters that fuel in a state of high combustion, and, therefore, producing no smoke, shall be always kept on that part of the grate which is nearest to the mouth of the flue (and which we shall call the back); by this means the smoke which arises from the imperfectly ignited fuel which is nearer to the front of the grate must pass over the surface of the red fuel, before it enters the flue, and is thereby ignited, and passes in a state of flame into the flue. A passage called the feeding-mouth leads to the front of the grate, and both this passage and the grate are generally inclined at a small angle to the horizon, in order to facilitate the advance of the fuel according as its combustion proceeds.

When fresh fuel for feeding the boiler is first introduced, it is merely laid in the feeding-mouth. Here it is exposed to the action of a part of the heat of the burning fuel on the grate, and undergoes, in some degree, the process of coking. The door of the feeding-mouth is furnished with small apertures for the admission of a stream of air, which carries the smoke evolved by the coking of the fresh fuel over the burning fuel on the grate, by which this smoke is ignited, and becomes flame, and in this state enters the flue, and circulates round the boiler. When the furnace is to be fed, the door of the feeding-mouth is opened, and the fuel which had been laid in it, and partially coked, is forced upon the front part of the grate. At first, its combustion being imperfect, but proceeding rapidly, a dense black smoke arises from it. The current of air from the open door through the feeding-mouth carries this over the vividly burning fuel in the back part of the grate, by which the smoke being ignited, passes in a state of flame into the flue. When the furnace again requires feeding, every part of this fuel will be in a state of active combustion, and it is forced to the back part of the grate next the flue, preparatory to the introduction of more fuel from the feeding-mouth.

The apertures in the door of the feeding-mouth are furnished with covers, so that the quantity of air admitted through them can be regulated by the workmen. The efficiency of these furnaces in a great degree depends on the judicious admission of the air through the feeding-mouth: for if less than the quantity necessary to support the combustion of the fuel be admitted, a part of the smoke will remain unconsumed; and if more than the proper quantity be admitted, it will defeat the effects of the fuel by cooling the boiler. If the process which we have just described be considered, it will not be difficult to perceive the total impossibility in such a furnace of exactly regulating the draught of air, so that too much shall not pass at one time, and too little at another. When the door is open to introduce fresh fuel into the feeding-mouth, and advance that which occupied it upon the grate, the workman ceases to have any control whatever over the draught of air; and even at other times when the door is closed, his discretion and attention cannot be depended on. The consequence is, that with these defects the proprietors of steam engines found, that in the place of economising the fuel, the use of these furnaces entailed on them such an increased expense that they were generally obliged to lay them aside.

(74.) Mr. Brunton of Birmingham having turned his attention to the subject, has produced a furnace which seems to be free from the objections against those we have just mentioned. The advantages of his contrivance, as stated by himself, are as follow:—

"First, I put the coal upon the grate by small quantities, and at very short intervals, say every two or three seconds. 2dly, I so dispose of the coals upon the grate, that the smoke evolved must pass over that part of the grate upon which the coal is in full combustion, and is thereby consumed. 3dly, As the introduction of coal is uniform in short spaces of time, the introduction of air is also uniform, and requires no attention from the fireman.

Pl. VIII.

"As it respects economy: 1st, The coal is put upon the fire by an apparatus driven by the engine, and so contrived that the quantity of coal is proportioned to the quantity of work which the engine is performing, and the quantity of air admitted to consume the smoke is regulated in the same manner. 2dly, The fire-door is never opened, excepting to clean the fire; the boiler of course is not exposed to that continual irregularity of temperature which is unavoidable in the common furnace, and which is found exceedingly injurious to boilers. 3dly, The only attention required is to fill the coal receiver, every two or three hours, and clean the fire when necessary. 4thly, The coal is more completely consumed than by the common furnace, as all the effect of what is termed stirring up the fire (by which no inconsiderable quantity of coal is passed into the ash-pit) is attained without moving the coal upon the grate."

The fire-place is a circular grate placed on a vertical shaft in a horizontal position. It is capable of revolving, and is made to do so by the vertical shaft, which is turned by wheelwork, which is worked by the engine itself; or this shaft or spindle may be turned by a water-wheel, on which a stream of water is allowed to flow from a reservoir into which it is pumped by the power of the engine; and by regulating the quantity of water in the stream, the grate may be made to revolve with a greater or less speed. In that part of the boiler which is over the grate, there is an aperture, in which is placed a hopper, through which fuel is let down upon the grate at the rate of any quantity per minute that may be required. The apparatus which admits the coals through this hopper is worked by the engine also, and by the same means as the grate is turned so that the grate revolves with a speed proportional to the rapidity with which the fuel is admitted through the hopper, and by this ingenious arrangement the fuel falls equally thick upon the grate.

The supply of water which turns the wheel which works the grate and the machinery in the hopper, is regulated by a cock connected with the self-regulating damper; so that when the steam is being produced too fast, the supply of water will be diminished, and by that means the supply of fuel to the grate will be diminished, and the grate will revolve less rapidly: and when the steam is being produced too slowly for the demands of the engine, the contrary effects take place. In this way the fuel which is introduced into the furnace is exactly proportioned to the work which the engine has to perform. The hopper may be made large enough to hold coals for a day's work, so that the furnace requires no other attendance than to deposite coals in the hopper each morning.

The coals are let down from the hopper on the grate at that part which is most remote from the flue; and as they descend in very small quantities at a time, they are almost immediately ignited. But until their ignition is complete, a smoke will arise, which, passing to the flue over the vividly burning fuel, will be ignited. Air is admitted through proper apertures, and its quantity regulated by the damper in the same manner as the supply of fuel.

The superiority of this beautiful invention over the common smoke-consuming furnaces is very striking. Its principle of self-adjustment as to the supply of coals and atmospheric air, and the proportioning of these to the quantity of work to be performed by the engine, not only independent of human labour, but with a greater degree of accuracy than any human skill or attention could possibly effect, produces saving of expense, both in fuel and labour.

(75.) Mr. Oldham, engineer to the Bank of Ireland, has proposed another modification of the self-regulating furnace, which seems to possess several advantages, and evinces considerable ingenuity.

He uses a slightly inclined grate, at the back or lower end of which is the flue, and at the front or higher end, the hopper for admitting the coals. In the bottom or narrow end of the hopper is a moveable shelf, worked by the engine. Upon drawing back this shelf, a small quantity of fuel is allowed to descend upon a fixed shelf under it; and upon the return of the moveable shelf, this fuel is protruded forward upon the grate. Every alternate bar of the grate is fixed, but the intermediate ones are connected with levers, by which they are moved alternately up and down.[22] The effect is, that the coals upon the bars are continually stirred, and gradually advanced by their own weight from the front of the grate, where they fall from the hopper, to the back, where they are deposited in the ash-pit. By the shape and construction of the bars, the air is conducted upwards between them, and rushes through the burning fuel, so as to act in the manner of a blowpipe, and the entire surface of the fire presents a sheet of flame.

We cannot fail to be struck with the beauty of all these contrivances, by which the engine is made to regulate itself, and supply its own wants. It is in fact, all but alive. It was observed by Belidor, long before the steam engine reached the perfection which it has now acquired, that it resembled an animal, and that no mere work of man ever approached so near to actual life. Heat is the principle of its existence. The boiler acts the part of the heart, from which its vivifying fluid rushes copiously through all the tubes, where having discharged the various functions of life, and deposited its heat in the proper places, it returns again to the source it sprung from, to be duly prepared for another circulation. The healthfulness of its action is indicated by the regularity of its pulsations; it procures its own food by its own labour; it selects those parts which are fit for its support, both as to quantity and quality; and has its natural evacuations, by which all the useless and innutritious parts are discharged. It frequently cures its own diseases, and corrects the irregularity of its own actions, exerting something like moral faculties. Without designing to carry on the analogy, Mr. Farey, in speaking of the variations incident to the work performed by different steam engines, states some further particulars in which it maybe curiously extended. "We must observe," says he, "that the variation in the performance of different steam engines, which are constructed on the same principle, working under the same advantages, is the same as would be found in the produce of the labour of so many different horses or other animals when compared with their consumption of food; for the effects of different steam engines will vary as much from small differences in the proportion of their parts, as the strength of animals from the vigour of their constitutions; and again, there will be as great differences in the performance of the same engine when in good and bad order, from all the parts being tight and well oiled, so as to move with little friction, as there is in the labour of an animal from his being in good or bad health, or excessively fatigued: but in all these cases there will be a maximum which cannot be exceeded, and an average which we ought to expect to obtain."

Share on Twitter Share on Facebook