PARALLEL ROADS OF GLEN ROY IN SCOTLAND.

Plate 2. Glen Roy and Glen Spean

  (PLATE 2. VIEW OF THE MOUTHS OF GLEN ROY AND GLEN SPEAN,
    BY SIR T. DICK LAUDER.
   VV. Hill of Bohuntine.
   VVV. Glen Roy.
   V(inverted)V. Mealderry.
   V. Entrance of Glen Spean
   VV(superscript)V. Point of division between Glens Roy
     and Spean.)

Perhaps no portion of the superficial drift of Scotland can lay claim to so modern an origin on the score of the freshness of its aspect, as that which forms what are called the Parallel Roads of Glen Roy. If they do not belong to the Recent epoch, they are at least posterior in date to the present outline of mountain and glen, and to the time when every one of the smaller burns ran in their present channels, though some of them have since been slightly deepened. The almost perfect horizontality, moreover, of the roads, one of which is continuous for about 20 miles from east to west, and 12 miles from north to south, shows that since the era of their formation no change has taken place in the relative levels of different parts of the district.

Figure 36. Map of Glen Roy

  (FIGURE 36. MAP OF THE PARALLEL ROADS OF GLEN ROY OR LOCHABER.

   A. five miles distant south-west from this point is
     Fort William, where the Lochy joins an arm of the sea,
     called Loch Eil.
   Vertical lines. Cols or watersheds at the heads of the
     glens—once the westward outlet of the lakes.
   Dots. Conspicuous delta deposits as laid down by
     Mr. T.F. Jamieson.)

Glen Roy is situated in the Western Highlands, about 10 miles east-north-east of Fort William, near the western end of the great glen of Scotland, or Caledonian Canal, and near the foot of the highest of the Grampians, Ben Nevis. (See map, Figure 36.) Throughout nearly its whole length, a distance of more than 10 miles, three parallel roads or shelves are traced along the steep sides of the mountains, as represented in the annexed view, Plate 2, by the late Sir T. Dick Lauder, each maintaining a perfect horizontality, and continuing at exactly the same level on the opposite sides of the glen. Seen at a distance, they appear like ledges, or roads, cut artificially out of the sides of the hills; but when we are upon them, we can scarcely recognise their existence, so uneven is their surface, and so covered with boulders. They are from 10 to 60 feet broad, and merely differ from the side of the mountain by being somewhat less steep.

On closer inspection, we find that these terraces are stratified in the ordinary manner of alluvial or littoral deposits, as may be seen at those points where ravines have been excavated by torrents. The parallel shelves, therefore, have not been caused by denudation, but by the deposition of detritus, precisely similar to that which is dispersed in smaller quantities over the declivities of the hills above. These hills consist of clay-slate, mica schist, and granite, which rocks have been worn away and laid bare at a few points immediately above the parallel roads. The lowest of these roads is about 850 feet above the level of the sea, the next about 212 feet higher, and the third 82 feet above the second. There is a fourth shelf, which occurs only in a contiguous valley called Glen Gluoy, which is 12 feet above the highest of all the Glen Roy roads, and consequently about 1156 feet above the level of the sea.*

     (* Another detached shelf also occurs at Kilfinnan. (See
     Map, Figure 36.))

One only, the lowest of the three roads of Glen Roy, is continued throughout Glen Spean, a large valley with which Glen Roy unites. (See Plate 2 and map, Figure 36.) As the shelves, having no slope towards the sea like ordinary river terraces, are always at the same absolute height, they become continually more elevated above the river in proportion as we descend each valley; and they at length terminate very abruptly, without any obvious cause, or any change either in the shape of the ground or in the composition or hardness of the rocks.

I should exceed the limits of this work, were I to attempt to give a full description of all the geographical circumstances attending these singular terraces, or to discuss the ingenious theories which have been severally proposed to account for them by Dr. Macculloch, Sir T. Lauder, and Messrs. Darwin, Agassiz, Milne, and Chambers. There is one point, however, on which all are agreed, namely, that these shelves are ancient beaches, or littoral formations, accumulated round the edges of one or more sheets of water which once stood for a long time successively at the level of the several shelves.

Figure 37. Section Through Side of Loch

  (FIGURE 37. SECTION THROUGH SIDE OF LOCH.

   AB. Supposed original surface of rock.
   CD. Roads or shelves in the outer alluvial covering of the hill.)

It is well known, that wherever a lake or marine fjord exists surrounded by steep mountains subject to disintegration by frost or the action of torrents, some loose matter is washed down annually, especially during the melting of snow, and a check is given to the descent of this detritus at the point where it reaches the waters of the lake. The waves then spread out the materials along the shore, and throw some of them upon the beach; their dispersing power being aided by the ice, which often adheres to pebbles during the winter months, and gives buoyancy to them. The annexed diagram (Figure 37) illustrates the manner in which Dr. MacCulloch and Mr. Darwin suppose "the roads" to constitute mere excrescences of the superficial alluvial coating which rests upon the hillside, and consists chiefly of clay and sharp unrounded stones.

Among other proofs that the parallel roads have really been formed along the margin of a sheet of water, it may be mentioned, that wherever an isolated hill rises in the middle of the glen above the level of any particular shelf, as in Mealderry, Plate 2, a corresponding shelf is seen at the same level passing round the hill, as would have happened if it had once formed an island in a lake or fjord. Another very remarkable peculiarity in these terraces is this; each of them comes in some portion of its course to a col, or parting ridge, between the heads of glens, the explanation of which will be considered in the sequel.

Those writers who first advocated the doctrine that the roads were the ancient beaches of freshwater lakes, were unable to offer any probable hypothesis respecting the formation and subsequent removal of barriers of sufficient height and solidity to dam up the water. To introduce any violent convulsion for their removal was inconsistent with the uninterrupted horizontality of the roads, and with the undisturbed aspect of those parts of the glens where the shelves come suddenly to an end.

Mr. Agassiz and Dr. Buckland, desirous, like the defenders of the lake theory, to account for the limitation of the shelves to certain glens, and their absence in contiguous glens, where the rocks are of the same composition, and the slope and inclination of the ground very similar, first started the theory that these valleys were once blocked up by enormous glaciers descending from Ben Nevis, giving rise to what are called, in Switzerland and in the Tyrol, glacier-lakes. In corroboration of this view, they contended that the alluvium of Glen Roy, as well as of other parts of Scotland, agrees in character with the moraines of glaciers seen in the Alpine valleys of Switzerland. It will readily be conceded that this hypothesis was preferable to any previous lacustrine theory, by accounting more easily for the temporary existence and entire disappearance of lofty transverse barriers, although the height required for the supposed dams of ice appeared very enormous.

Before the idea of glacier-lakes had been suggested by Agassiz, Mr. Darwin examined Glen Roy, and came to the opinion that the shelves were formed when the glens were still arms of the sea, and, consequently, that there never were any seaward barriers. According to him, the land emerged during a slow and uniform upward movement, like that now experienced throughout a large part of Sweden and Finland; but there were certain pauses in the upheaving process, at which times the waters of the sea remained stationary for so many centuries as to allow of the accumulation of an extraordinary quantity of detrital matter, and the excavation, at many points immediately above the sea-level, of deep notches and bare cliffs in the hard and solid rock.

This theory I adopted in 1841 ("Elements," 2nd edition), as appearing to me less objectionable than any other then proposed. The phenomena most difficult to reconcile with it are, first, the abrupt cessation of the roads at certain points in the different glens; secondly, their unequal number in different valleys connecting with each other, there being three, for example, in Glen Roy, and only one in Glen Spean; thirdly, the precise horizontality of level maintained by the same shelf over a space many leagues in length, requiring us to assume, that during a rise of 1156 feet no one portion of the land was raised even a few yards above another; fourthly, the coincidence of level already alluded to of each shelf with a col, or the point forming the head of two glens, from which the rain-waters flow in opposite directions. This last-mentioned feature in the physical geography of Lochaber Mr. Darwin endeavoured to explain in the following manner. He called these cols "land-straits," and regarding them as having been anciently sounds or channels between islands, he pointed out that there is a tendency in such sounds to be silted up, and always the more so in proportion to their narrowness. In a chart of the Falkland Islands, by Captain Sulivan, R.N., it appears that there are several examples there of straits where the soundings diminish regularly towards the narrowest part. One is so nearly dry that it can be walked over at low water, and another, no longer covered by the sea, is supposed to have recently dried up in consequence of a small alteration in the relative level of sea and land. "Similar straits," observes Mr. Chambers, "hovering, in character, between sea and land, and which may be called fords, are met with in the Hebrides. Such, for example, is the passage dividing the islands of Lewis and Harris, and that between North Uist and Benbecula, both of which would undoubtedly appear as cols, coinciding with a terrace or raised beach, all round the islands if the sea were to subside."*

     (* R. Chambers, "Ancient Sea Margins" page 114.)

The first of the difficulties above alluded to, namely, the non-extension of the shelves over certain parts of the glens, might be explained, said Mr. Darwin, by supposing in certain places a quick growth of green turf on a good soil, which prevented the rain from washing away any loose materials lying on the surface. But wherever the soil was barren, and where green sward took long to form, there may have been time for the removal of the gravel. In one case an intermediate shelf appears for a short distance (three quarters of a mile) on the face of the mountain called Tombhran, between the two upper shelves, and is seen nowhere else. It occurs where there was the longest space of open water, and where the waves may have acquired a more than ordinary power to heap up detritus.

The unequal number of the shelves in valleys communicating with each other, and in which the boundary rocks are similar in composition, and the general absence of any shelves at corresponding altitudes in glens on the opposite watershed, like that of the Spey, and in valleys where the waters flow eastward, are difficulties attending the marine theory which have never yet been got over. Mr. T.F. Jamieson, before cited, has, during a late visit to Lochaber, in 1861, observed many facts highly confirmatory of the hypothesis of glacier-lakes which, as I have already stated, was originally advanced by Mr. Agassiz. In the first place, he found much superficial scoring and polishing of rocks, and accumulation of boulders at those points where signs of glacial action ought to appear, if ice had once dammed up the waters of the glens in which the "roads" occur. Ben Nevis may have sent down its glaciers from the south, and Glen Arkaig from the north, for the mountains at the head of the last-mentioned glen are 3000 feet high, and may, together with other tributary glens, have helped to choke up the great Caledonian valley with ice, so as to block up for a time the mouths of the Spean, Roy, and Gluoy. The temporary conversion of these glens into glacier-lakes is the more conceivable, because the hills at their upper ends not being lofty nor of great extent, they may not have been filled with ice at a time when great glaciers were generated in other adjoining and much higher regions.

Secondly. The shelves, says Mr. Jamieson, are more precisely defined and unbroken than any of the raised beaches or acknowledged ancient coast-lines visible on the west of Scotland, as in Argyllshire, for example.

Thirdly. At the level of the lower shelf in Glen Roy, at points where torrents now cut channels through the shelf as they descend the hill-side, there are small delta-like extensions of the shelf, perfectly preserved, as if the materials, whether fine or coarse, had originally settled there in a placid lake, and had not been acted upon by tidal currents, mingling them with the sediment of other streams. These deltas are too entire to allow us to suppose that they have at any time since their origin been exposed to the waves of the sea.

Fourthly. The alluvium on the cols or watersheds, before alluded to, is such as would have been formed if the waters of the rivers had been made to flow east, or out of the upper ends of the supposed glacier-lakes, instead of escaping at the lower ends, in a westerly direction, where the great blockages of ice are assumed to have occurred.

In addition to these arguments of Mr. Jamieson, I may mention that in Switzerland, at present, no testacea live in the cold waters of glacier-lakes; so that the entire absence of fossil shells, whether marine or freshwater, in the stratified materials of each shelf, would be accounted for if the theory above mentioned be embraced.

When I examined "the parallel roads" in 1825, in company with Dr. Buckland, neither this glacier theory nor Mr. Darwin's suggestion of ancient sea-margins had been proposed, and I have never since revisited Lochaber. But I retain in my memory a vivid recollection of the scenery and physical features of the district, and I now consider the glacier-lake theory as affording by far the most satisfactory solution of this difficult problem. The objection to it, which until lately appeared to be the most formidable, and which led Mr. Robert Chambers in his "Sea Margins," to reject it entirely, was the difficulty of conceiving how the waters could be made to stand so high in Glen Roy as to allow the uppermost shelf to be formed. Grant a barrier of ice in the lower part of the glen of sufficient altitude to stop the waters from flowing westward, still, what prevented them from escaping over the col at the head of Glen Glaster? This col coincides exactly in level, as Mr. Milne Home first ascertained, with the second or middle shelf of Glen Roy. The difficulty here stated appears now to be removed by supposing that the higher lines or roads were formed before the lower ones, and when the quantity of ice was most in excess. We must imagine that at the time when the uppermost shelf of Glen Roy was forming in a shallow lake, the lower part of that glen was filled up with ice, and, according to Mr. Jamieson, a glacier from Loch Treig then protruded itself across Glen Spean and rested on the flank of the hill on the opposite side in such a manner as effectually to prevent any water from escaping over the Glen Glaster col. The proofs of such a glacier having actually existed at the point in question consist, he says, in numerous cross striae observable in the bottom of Glen Spean, and in the presence of moraine matter in considerable abundance on the flanks of the hill extending to heights above the Glen Glaster col. When the ice shrank into less dimensions the second shelf would be formed, having its level determined by the col last mentioned, Glen Spean in the meantime being filled with a glacier. Finally, the ice blockage common to glens Roy, Spean, and Laggan, which consisted probably of a glacier from Ben Nevis, gave rise to the lowest and most extensive lake, the waters of which escaped over the pass of Muckul or the col at the head of Loch Laggan, which, as Mr. Jamieson has now ascertained: agrees precisely in level with the lowest of all the shelves, and where there are unequivocal signs of a river having flowed out for a considerable period.

Dr. Hooker has described some parallel terraces, very analogous in their aspect to those of Glen Roy, as existing in the higher valleys of the Himalaya, of which his pencil has given us several graphic illustrations. He believes these Indian shelves to have originated on the borders of glacier-lakes, the barriers of which were usually formed by the ice and moraines of lateral or tributary glaciers, which descended into and crossed the main valley, as we have supposed in the case of Glen Roy; but others he ascribes to the terminal moraine of the principal glacier itself, which had retreated during a series of milder seasons, so as to leave an interval between the ice and the terminal moraine. This interspace caused by the melting of ice becomes filled with water and forms a lake, the drainage of which usually takes place by percolation through the porous parts of the moraine, and not by a stream overflowing that barrier. Such a glacier-lake Dr. Hooker actually found in existence near the head of the Yangma valley in the Himalaya. It was moreover partially bounded by recently formed marginal terraces or parallel roads, implying changes of level in the barrier of ice and moraine matter.*

     (* Hooker, "Himalayan Journal" volume 1 page 242; 2 pages
     119, 121, 166. I have also profited by the author's personal
     explanations.)

It has been sometimes objected to the hypothesis of glacier-lakes, as applied to the case of Glen Roy, that the shelves must have taken a very long period for their formation. Such a lapse of time, it is said, might be consistent with the theory of pauses or stationary periods in the rise of the land during an intermittent upward movement, but it is hardly compatible with the idea of so precarious and fluctuating a barrier as a mass of ice. But the reader will have seen that the permanency of level in such glacier-lakes has no necessary connection with minor changes in the height of the supposed dam of ice. If a glacier descending from higher mountains through a tributary glen enters the main valley in which there happens to be no glacier, the river is arrested in its course and a lake is formed. The dam may be constantly repaired and may vary in height several hundreds of feet without affecting the level of the lake, so long as the surplus waters escape over a col or parting ridge of rock. The height at which the waters remain stationary is determined solely by the elevation of the col, and not by the barrier of ice, provided the barrier is higher than the col.

But if we embrace the theory of glacier-lakes, we must be prepared to assume not only that the sea had nothing to do with the original formation of the "parallel roads," but that it has never, since the disappearance of the lakes, risen in any one of the glens up to the level of the lowest shelf, which is about 850 feet high; for in that case the remarkable persistency and integrity of the roads and deltas, before described, must have been impaired.

We have seen that 50 miles to the south of Lochaber, the glacier formations of Lanarkshire with marine shells of arctic character have been traced to the height of 524 feet. About 50 miles to the south-east in Perthshire are those stratified clays and sands, near Killiecrankie, which were once supposed to be of submarine origin, and which in that case would imply the former submergence of what is now dry land to the extent of 1550 feet, or several hundred feet beyond the highest of the parallel roads. Even granting that these laminated drifts may have had a different origin, as above suggested, there are still many facts connected with the distribution of erratics and the striation of rocks in Scotland which are not easily accounted for without supposing the country to have sunk, since the era of continental ice, to a greater depth than 525 feet, the highest point to which marine shells have yet been traced.

After what was said of the pressure and abrading power of a general crust of ice, like that now covering Greenland, it is almost superfluous to say that the parallel roads must have been of later date than such a state of things, for every trace of them must have been obliterated by the movement of such a mass of ice. It is no less clear that as no glacier-lakes can now exist in Greenland [Note 26], so there could have been none in Scotland, when the mountains were covered with one great crust of ice. It may, however, be contended that the parallel roads were produced when the general crust of ice first gave place to a period of separate glaciers, and that no period of deep submergence ever intervened in Lochaber after the time of the lakes. Even in that case, however, it is difficult not to suppose that the Glen Roy country participated in the downward movement which sank part of Lanarkshire 525 feet beneath the sea, subsequently to the first great glaciation of Scotland. Yet that amount of subsidence might have occurred, and even a more considerable one, without causing the sea to rise to the level of the lowest shelf, or to a height of 850 feet above the present sea-level.

This is a question on which I am not prepared at present to offer a decided opinion.

Whether the horizontality of the shelves or terrace-lines is really as perfect as has been generally assumed is a point which will require to be tested by a more accurate trigonometrical survey than has yet been made. The preservation of precisely the same level in the lowest line throughout the glens of Roy, Spean, and Laggan, for a distance of 20 miles east and west, and 10 or 12 miles north and south, would be very wonderful if ascertained with mathematical precision. Mr. Jamieson, after making in 1862 several measurements with a spirit-level, has been led to suspect a rise in the lowest shelf of one foot in a mile in a direction from west to east, or from the mouth of Glen Roy to a point 6 miles east of it in Glen Spean. To confirm such observations, and to determine whether a similar rate of rise continues eastward, as far as the pass of Muckul, would be most important.

On the whole, I conclude that the Glen Roy terrace-lines and those of some neighbouring valleys, were formed on the borders of glacier-lakes, in times long subsequent to the principal glaciation of Scotland. They may perhaps have been nearly as late, especially the lowest of the shelves, as that portion of the Pleistocene period in which Man co-existed in Europe with the mammoth.

Share on Twitter Share on Facebook