THEORY OF THE ORIGIN OF LAKE-BASINS BY THE EROSIVE ACTION OF GLACIERS, CONSIDERED.

Geologists are all agreed that the last series of movements to which the Alps owe their present form and internal structure occurred after the deposition of the Miocene strata; and it has been usual to refer the origin of the numerous lake-basins of Alpine and sub-Alpine regions both in Switzerland and Northern Italy to the same movements; for it seemed not unnatural to suppose, that forces capable of modifying the configuration of the greatest European chain, by uplifting some of its component Tertiary strata (those of marine origin of the Miocene period) several thousand feet above their former level, after throwing them into vertical and contorted positions, must also have given rise to many superficial inequalities, in some of which large bodies of water would collect. M. Desor, in a memoir on the Swiss and Italian lakes, suggested that they may have escaped being obliterated by sedimentary deposition by having been filled with ice during the whole of the glacial period.

Subsequently to the retreat of the great glaciers we know that the lake-basins have been to a certain extent encroached upon and turned into land by river deltas; one of which, that of the Rhone at the head of the Lake of Geneva, is no less than 12 miles long and several miles broad, besides which there are many torrents on the borders of the same lake, forming smaller deltas.

M. Gabriel de Mortillet after a careful study of the glacial formations of the Alps agreed with his predecessors that the great lakes had existed before the glacial period, but came to the opinion in 1859 that they had all been first filled up with alluvial matter and then re-excavated by the action of ice, which during the epoch of intense cold had by its weight and force of propulsion scooped out the loose and incoherent alluvial strata, even where they had accumulated to a thickness of 2000 feet. Besides this erosion, the ice had carried the whole mass of mud and stones up the inclined planes, from the central depths to the lower outlets of the lakes and sometimes far beyond them. As some of these rock-basins are 500, others more than 2000 feet deep, having their bottoms in some cases 500, in others 1000 feet below the level of the sea, and having areas from 20 to 50 miles in length and from 4 to 12 in breadth, we may well be startled at the boldness of this hypothesis.

The following are the facts and train of reasoning which induced M. de Mortillet to embrace these views. At the lower ends of the great Italian lakes, such as Maggiore, Como, Garda, and others, there are vast moraines which are proved by their contents to have come from the upper Alpine valleys above the lakes. Such moraines often repose on an older stratified alluvium, made up of rounded and worn pebbles of precisely the same rocks as those forming the moraines, but not derived from them, being small in size, never angular, polished, or striated, and the whole having evidently come from a great distance. These older alluvial strata must, according to M. de Mortillet, be of pre-glacial date and could not have been carried past the sites of the lakes, unless each basin had previously been filled and levelled up with mud, sand, and gravel, so that the river channel was continuous from the upper to the lower extremity of each basin.

Professor Ramsay, after acquiring an intimate knowledge of the glacial phenomena of the British Isles, had taught many years before that small tarns and shallow rock-basins such as we see in many mountain regions owe their origin to glaciers which erode the softer rocks, leaving the harder ones standing out in relief and comparatively unabraded. Following up this idea after he had visited Switzerland and without any communication with M. de Mortillet or cognisance of his views, he suggested in 1859 that the lake-basins were not of pre-glacial date, but had been scooped out by ice during the glacial period, the excavation having for the most part been effected in Miocene sandstone, provincially called, on account of its softness, "molasse." By this theory he dispensed with the necessity of filling up pre-existing cavities with stratified alluvium, in the manner proposed by M. de Mortillet.

I will now explain to what extent I agree with, and on what points I feel compelled to differ from the two distinguished geologists above cited. First. It is no doubt true, as Professor Ramsay remarks, that heavy masses of ice, creeping for ages over a surface of dry land (whether this comprise hills, plateaus, and valleys, as in the case of Greenland, before described, or be confined to the bottoms of great valleys, as now in the higher Alps), must often by their grinding action produce depressions, in consequence of the different degrees of resistance offered by rocks of unequal hardness. Thus, for example, where quartzose beds of mica-schist alternate with clay-slate, or where trap-dykes, often causing waterfalls in the courses of torrents, cut through sandstone or slate—these and innumerable other common associations of dissimilar stony compounds must give rise to a very unequal amount of erosion and consequently to lake-basins on a small scale. But the larger the size of any lake, the more certain it will be to contain within it rocks of every degree of hardness, toughness, and softness; and if we find a gradual deepening from the head towards the central parts and a shallowing again from the middle to the lower end, as in several of the great Swiss and Italian lakes, which are 30 or 40 miles in length, we require a power capable of acting with a considerable degree of uniformity on these masses of varying powers of resistance.

Secondly. Several of the great lakes are by no means in the line of direction which they ought to have taken had they been scooped out by the pressure and onward movement of the extinct glaciers. The Lake of Geneva, for instance, had it been the work of ice, would have been prolonged from the termination of the upper valley of the Rhone towards the Jura, in the direction from F to G of the map, Figure 42, instead of running from F to I.

Thirdly. It has been ascertained experimentally, that in a glacier, as in a river, the rate of motion is accelerated or lessened, according to the greater or less slope of the ground; also, that the lower strata of ice, like those of water, move more slowly than those above them. In the Lago Maggiore, which is more than 2600 feet deep (797 metres), the ice, says Professor Ramsay, had to descend a slope of about 3 degrees for the first 25 miles, and then to ASCEND for the last 12 miles (from the deepest part towards the outlet) at an angle of 5 degrees. It is for those who are conversant with the dynamics of glacier motion to divine whether in such a case the discharge of ice would not be entirely effected by the superior and faster moving strata, and whether the lowest would not be motionless or nearly so, and would therefore exert very little, if any, friction on the bottom.

Fourthly. But the gravest objection to the hypothesis of glacial erosion on so stupendous a scale is afforded by the entire absence of lakes of the first magnitude in several areas where they ought to exist if the enormous glaciers which once occupied those spaces had possessed the deep excavating power ascribed to them. Thus in the area laid down on the map, Figure 43, or that covered by the ancient moraine of the Dora Baltea, we see the monuments of a colossal glacier derived from Mont Blanc and Monte Rosa, which descended from points nearly 100 miles distant, and then emerging from the narrow gorge above Ivrea deployed upon the plains of the Po, advancing over a floor of marine Pliocene strata of no greater solidity than the Miocene sandstone and conglomerate in which the lake-basins of Geneva, Zurich, and some others are situated. Why did this glacier fail to scoop out a deep and wide basin rivalling in size the lakes of Maggiore or Como, instead of merely giving rise to a few ponds above Ivrea, which may have been due to ice action? There is one lake, it is true—that of Candia, near the southern extremity of the moraine—which is larger; but even this, as will be seen by the map, is quite of subordinate importance, and whether it is situated in a rock basin or is simply caused by a dam of moraine matter has not yet been fully made out.

There ought also to have been another great lake, according to the theory under consideration, in the space now occupied by the moraine of the Dora Riparia, between Susa and Turin (see map, Figure 43). Signor Gastaldi has shown that all the ponds in that area consist exclusively of what M. de Mortillet has denominated morainic lakes, i.e. caused by barriers of glacier-mud and stones.

Fifthly. In proof of the great lakes having had no existence before the glacial period, Professor Ramsay observes that we do not find in the Alps any freshwater strata of an age intermediate between "the close of the Miocenic and the commencement of the glacial epoch."*

     (* "Quarterly Journal of the Geological Society" volume 18
     1862.)

But although such formations are scarce, they are by no means wholly wanting; and if it can be shown that any one of the principal lakes, that of Zurich for example, existed prior to the glacial era it will follow that in the Alps the erosive power of ice was not required to produce lake-basins on a large scale. The deposits alluded to on the borders of the Lake of Zurich are those of Utznach and Durnten, situated each about 350 feet above the present level of the lake and containing valuable beds of lignite.

The first of them, that of Utznach, is a delta formed at the head of the ancient and once more extensive lake. The argillaceous and lignite-bearing strata, more than 100 feet in thickness, rest unconformably on highly inclined and sometimes vertical Miocene molasse. These clays are covered conformably by stratified sand and gravel 60 feet thick, partly consolidated, in which the pebbles are of rocks belonging to the upper valleys of the Limmat and its tributaries, all of them small and not glacially striated and wholly without admixture of large angular stones. On the top of all repose very large erratic blocks, affording clear evidence that the colossal glacier which once filled the valley of the Limmat covered the old littoral deposit. The great age of the lignite is partly indicated by the bones of Elephas antiquus found in it.

I visited Utznach in company with M. Escher von der Linth in 1857, and during the same year examined the lignite of Durnten, many miles farther down on the right bank of the lake, in company with Professor Heer and M. Marcou. The beds there are of the same age and within a few feet of the same height above the level of the lake. They might easily have been overlooked or confounded with the general glacial drift of the neighbourhood, had not the bed of lignite, which is from 5 to 12 feet thick, been worked for fuel, during which operation many organic remains came to light. Among these are the teeth of Elephas antiquus, determined by Dr. Falconer, and Rhinoceros leptorhinus? (R. megarhinus, Christol), the wild bull and red deer (Bos primigenius, Boj., and Cervus elaphus, L.), the last two determined by Professor Rutimeyer. In the same beds I found many freshwater shells of the genera Paludina, Limnaea, etc., all of living species. The plants named by Professor Heer are also Recent and agree singularly with those of the Cromer buried forest, before described.

Among them are the Scotch and spruce firs, Pinus sylvestris and Pinus abies, and the buckbean, or Menyanthes trifoliata, etc., besides the common birch and other European plants.

Overlying this lignite are first, as at Utznach, stratified gravel not of glacial origin, about 30 feet thick; and secondly, highest of all, huge angular erratic blocks clearly indicating the presence of a great glacier posterior in date to all the organic remains above enumerated.

If any one of the existing Swiss lakes were now lowered by deepening its outlet, or by raising the higher portion of it relatively to the lower, we should see similar deltas of comparatively modern date exposed to view, some of them with embedded trunks of pines of the same species drifted down during freshets. Such deposits would be most frequent at the upper ends of the lakes, but a few would occur on either bank not far from the shore where torrents once entered, agreeing in geographical position with the lignite formations of Utznach and Durnten.

There are other freshwater formations with lignite, besides those on the Lake of Zurich, as those of Wetzikon near the Pfaffikon Lake, of Kaltbrunnen, of Buchberg, and that of Morschweil between St. Gall and Rorschach, but none probably older than the Durnten beds. Like the buried forest of Cromer they are all pre-glacial, yet they by no means represent the older nor even the newer Pliocene period, but rather the beginning of the Pleistocene. It is therefore true, as Professor Ramsay remarks, that, as yet, no strata "of the age of the English Crag" have been detected in any Alpine valley. In other words, there are no freshwater formations yet known corresponding in date to the Pliocene beds of the upper Val d'Arno, above Florence—a fact from which we may infer (though with diffidence, as the inference is based on negative evidence), that, although the great Alpine valleys were eroded in Pliocene times, the lake-basins were, nevertheless, of Pleistocene date—some of them formed before, others during, the glacial epoch.

Sixthly. In what manner then did the great lake-basins originate if they were not hollowed out by ice? My answer is, they are all due to unequal movements of upheaval and subsidence. We have already seen that the buried forest of Cromer, which by its organic contents seems clearly to be of the same age as the lignite of Durnten, was pre-glacial and that it has undergone a great oscillation of level (about 500 feet in both directions) since its origin, having first sunk to that extent below the sea and then been raised up again to the sea-level. In the countless Post-Miocene ages which preceded the glacial period there was ample time for the slow erosion by water of all the principal hydrographical basins of the Alps, and the sites of all the great lakes coincide, as Professor Ramsay truly says, with these great lines of drainage. The lake-cavities do not lie in synclinal troughs, following the strike and foldings of the strata, but often, as the same geologist remarks, cross them at high angles; nor are they due to rents or gaping fissures, although these, with other accidents connected with the disturbing movements of the Alps, may sometimes have determined originally the direction of the valleys. The conformity of the lake-basins to the principal watercourses is explicable if we assume them to have resulted from inequalities in the upward and downward movements of the whole country in Pleistocene times, after the valleys were eroded.

We know that in Sweden the rate of the rise of the land is far from uniform, being only a few inches in a century near Stockholm, while north of it and beyond Gefle it amounts to as many feet in the same number of years. Let us suppose with Charpentier that the Alps gained in height several thousand feet at the time when the intense cold of the glacial period was coming on. This gradual rise would be an era of aqueous erosion and of the deepening, widening, and lengthening of the valleys. It is very improbable that the elevation would be everywhere identical in quantity, but if it was never in excess in the outskirts as compared to the central region or crest of the chain, it would not give rise to lakes. When, however, the period of upheaval was followed by one of gradual subsidence, the movement not being everywhere strictly uniform, lake-basins would be formed wherever the rate of depression was in excess in the upper country. Let the region, for example, near the head waters of the great rivers sink at the rate of from 4 to 6 feet per century, while only half as much subsidence occurs towards the circumference of the mountains—the rate diminishing about an inch per mile in a distance, say of 40 miles—this might convert many of the largest and deepest valleys at their lower ends into lakes.

We have no certainty that such movements may not now be in progress in the Alps; for if they are as slow as we have assumed, they would be as insensible to the inhabitants as is the upheaval of Scandinavia or the subsidence of Greenland to the Swedes and Danes who dwell there. They only know of the progress of such geographical revolutions because a slight change of level becomes manifest on the margin of the sea. The lines of elevation or depression above supposed might leave no clear geological traces of their action on the high ridges and table-lands separating the valleys of the principal rivers; it is only when they cross such valleys that the disturbance caused in the course of thousands of years in the drainage becomes apparent. If there were no ice, the sinking of the land might not give rise to lakes. To accomplish this in the absence of ice, it is necessary that the rate of depression should be sufficiently fast to make it impossible for the depositing power of the river to keep pace with it, or in other words to fill up the incipient cavity as fast as it begins to form. Such levelling operations once complete, the running water, aided by sand and pebbles, will gradually cut a gorge through the newly raised rock so as to prevent it from forming a barrier. But if a great glacier fill the lower part of the valley all the conditions of the problem are altered. Instead of the mud, sand, and stones drifted down from the higher regions being left behind in the incipient basin, they all travel onwards in the shape of moraines on the top of the ice, passing over and beyond the new depression, so that when at the end of fifty or a thousand centuries the glacier melts, a large and deep basin representing the difference in the movement of two adjoining mountain areas—namely, the central and the circumferential—is for the first time rendered visible.

By adopting this hypothesis, we concede that there is an intimate connection between the glacial period and a predominance of lakes, in producing which the action of ice is threefold; first, by its direct power in scooping out shallow basins where the rocks are of unequal hardness; an operation which can by no means be confined to the land, for it must extend to below the level of high water a thousand feet and more in such fjords as have been described as filled with ice in Greenland.

Secondly. The ice will act indirectly by preventing cavities caused by inequalities of subsidence or elevation from becoming the receptacles first of water and then of sediment, by which the cavities would be levelled up and the lakes obliterated.

Thirdly. The ice is also an indirect cause of lakes, by heaping up mounds of moraine matter and thus giving rise to ponds and even to sheets of water several miles in diameter.

The comparative scarcity, therefore, of lakes of Pleistocene date in tropical countries, and very generally south of the fortieth and fiftieth parallels of latitude, may be accounted for by the absence of glacial action in such regions.

Share on Twitter Share on Facebook