GREAT SOUTHERN EXTENSION OF TRAINS OF ERRATIC BLOCKS IN BERKSHIRE, MASSACHUSETTS, U.S., LATITUDE 42 DEGREES NORTH.

Having treated so fully in this volume of the events of the glacial period, I am unwilling to conclude without laying before the reader the evidence displayed in North America of ice-action in latitudes farther south by about ten degrees than any seen on an equal scale in Europe. This extension southwards of glacial phenomena in regions where there are no snow-covered mountains like the Alps to explain the exception, nor any hills of more than moderate elevation, constitutes a feature of the western as compared to the eastern side of the Atlantic, and must be taken into account when we speculate on the causes of the refrigeration of the northern hemisphere during the Pleistocene period.

Figure 50. Erratic Blocks in Berkshire, Massachusetts

  (FIGURE 50. MAP SHOWING THE RELATIVE POSITION AND DIRECTION
   OF SEVEN TRAINS OF ERRATIC BLOCKS IN BERKSHIRE, MASSACHUSETTS,
   AND IN PART OF THE STATE OF NEW YORK.
     Distance in a straight line, between the mountain ranges
       A and C, about eight miles.

  A. Canaan range, in the State of New York. The crest consists of
     green chloritic rock.
  B. Richmond range, the western division of which consists in
     Merriman's Mount of the same green rock as A, but in a more
     schistose form, while the eastern division is composed of
     slaty limestone.
  C. The Lenox range, consisting in part of mica-schist, and in some
     districts of crystalline limestone.
  d. Knob in the range A, from which most of the train Number 6 is
     supposed to have been derived.
  e. Supposed starting point of the train Number 5 in the range A.
  f. Hiatus of 175 yards, or space without blocks.
  g. Sherman's House.
  h. Perry's Peak.
  k. Flat Rock.
  l. Merriman's Mount.
  m. Dupey's Mount.
  n. Largest block of train, Number 6. See Figures 51 and 52.
  p. Point of divergence of part of the train Number 6, where a
     branch is sent off to Number 5.
  Number 1. The most southerly train examined by Messrs. Hall and
     Lyell, between Stockbridge and Richmond, composed of blocks
     of black slate, blue limestone and some of the green Canaan
     rock, with here and there a boulder of white quartz.
  Number 2. Train composed chiefly of large limestone masses, some
     of them divided into two or more fragments by natural joints.
  Number 3. Train composed of blocks of limestone and the green
     Canaan rock; passes south of the Richmond Station on the Albany
     and Boston railway; is less defined than Numbers 1 and 2.
  Number 4. Train chiefly of limestone blocks, some of them thirty
     feet in diameter, running to the north-west of the Richmond
     Station, and passing south of the Methodist Meeting-house,
     where it is intersected by a railway cutting.
  Number 5. South train of Dr. Reid, composed entirely of large
     blocks of the green chloritic Canaan rock; passes north of
     the Old Richmond Meeting-house, and is three-quarters of a mile
     north of the preceding train (Number 4).
  Number 6. The great or principal train (north train of Dr. Reid),
     composed of very large blocks of the Canaan rock, diverges at p,
     and unites by a branch with train Number 5.
  Number 7. A well-defined train of limestone blocks, with a few
     of the Canaan rock, traced from the Richmond to the slope
     of the Lenox range.)

In 1852, accompanied by Mr. James Hall, state geologist of New York, author of many able and well-known works on geology and palaeontology, I examined the glacial drift and erratics of the county of Berkshire, Massachusetts, and those of the adjoining parts of the state of New York, a district about 130 miles inland from the Atlantic coast and situated due west of Boston in latitude 42 degrees 25 minutes north. This latitude corresponds in Europe to that of the north of Portugal. Here numerous detached fragments of rock are seen, having a linear arrangement or being continuous in long parallel trains, running nearly in straight lines over hill and dale for distances of 5, 10, and 20 miles, and sometimes greater distances. Seven of the more conspicuous of these trains, from 1 to 7 inclusive, Figure 50, are laid down in the accompanying map or ground plan.*

     (* This ground plan, and a farther account of the Berkshire
     erratics was given in an abstract of a lecture delivered by
     me to the Royal Institution of Great Britain, April 27, 1855
     and published in their Proceedings.)

It will be remarked that they run in a north-west and south-east direction, or almost transversely to the ranges of hills A, B, and C, which run north-north-east and south-south-west. The crests of these chains are about 800 feet in height above the intervening valleys. The blocks of the northernmost train, Number 7, are of limestone derived from the calcareous chain B; those of the two trains next to the south, Numbers 6 and 5, are composed exclusively in the first part of their course of a green chloritic rock of great toughness, but after they have passed the ridge B, a mixture of calcareous blocks is observed. After traversing the valley for a distance of 6 miles these two trains pass through depressions or gaps in the range C, as they had previously done in crossing the range B, showing that the dispersion of the erratics bears some relation to the acutal inequalities of the surface, although the course of the same blocks is perfectly independent of the more leading features of the geography of the country, or those by which the present lines of drainage are determined. The greater number of the green chloritic fragments in trains 5 and 6 have evidently come from the ridge A, and a large proportion of the whole from its highest summit d, where the crest of the ridge has been worn into those dome-shaped masses called "roches moutonnees," already alluded to, and where several fragments having this shape, some of them 30 feet long, are seen in situ, others only slightly removed from their original position, as if they had been just ready to set out on their travels. Although smooth and rounded on their tops they are angular on their lower parts, where their outline has been derived from the natural joints of the rock. Had these blocks been conveyed from d by glaciers, they would have radiated in all directions from a centre, whereas not one even of the smaller ones is found to the westward of A, though a very slight force would have made them roll down to the base of that ridge, which is very steep on its western declivity. It is clear, therefore, that the propelling power, whatever it may have been, acted exclusively in a south-easterly direction. Professor Hall and I observed one of the green blocks—24 feet long, poised upon another about 19 feet in length. The largest of all on the west flank of m, or Dupey's Mount, called the Alderman, is above 90 feet in diameter, and nearly 300 feet in circumference. We counted at some points between forty and fifty blocks visible at once, the smallest of them larger than a camel.

Figure 51. Dome-shaped Block; Figure 52. Position of Block

  (FIGURE 51. ERRATIC DOME-SHAPED BLOCK OF COMPACT CHLORITIC ROCK
  (n in map in Figure 50), near the Richmond Meeting-house,
    Berkshire, Massachusetts, latitude 42 degrees 25 minutes
    North. Length, 52 feet; width, 40 feet; height above the
    soil, 15 feet.)

The annexed drawing (Figure 51) represents one of the best known of train Number 6, being that marked n on the map (Figure 50). According to our measurement it is 52 feet long by 40 in width, its height above the drift in which it is partially buried being 15 feet. At the distance of several yards occurs a smaller block, 3 or 4 feet in height, 20 feet long, and 14 broad, composed of the same compact chloritic rock, and evidently a detached fragment from the bigger mass, to the lower and angular part of which it would fit on exactly. This erratic n has a regularly rounded top, worn and smoothed like the "roches moutonnees" before mentioned, but no part of the attrition can have occurred since it left its parent rock, the angles of the lower portion being quite sharp and unblunted.

  (FIGURE 52. SECTION SHOWING THE POSITION OF THE BLOCK IN FIGURE 51.

  a. The large block in Figure 51 and n in the map in Figure 50.
  b. Fragment detached from the same.
  c. Unstratified drift with boulders.
  d. Silurian limestone in inclined stratification.)

From railway cuttings through the drift of the neighbourhood and other artificial excavations, we may infer that the position of the block n, if seen in a vertical section, would be as represented in Figure 52. The deposit c in that section consists of sand, mud, gravel, and stones, for the most part unstratified, resembling the till or boulder clay of Europe. It varies in thickness from 10 to 50 feet, being of greater depth in the valleys. The uppermost portion is occasionally, though rarely, stratified. Some few of the imbedded stones have flattened, polished, striated, and furrowed sides. They consist invariably, like the seven trains above mentioned, of kinds of rock confined to the region lying to the north-west, none of them having come from any other quarter. Whenever the surface of the underlying rock has been exposed by the removal of the superficial detritus, a polished and furrowed surface is seen, like that underneath a glacier, the direction of the furrows being from north-west to south-east, or corresponding to the course of the large erratics.

As all the blocks, instead of being dispersed from a centre, have been carried in one direction and across the ridges A, B, C and the intervening valleys, the hypothesis of glaciers is out of the question. I conceive, therefore, that the erratics were conveyed to the places they now occupy by coast ice, when the country was submerged beneath the waters of a sea cooled by icebergs coming annually from arctic regions.

Figure 53. Canaan and Richmond Valleys

  (FIGURE 53. SECTION THROUGH CANAAN AND RICHMOND VALLEYS AT A TIME
   WHEN THEY WERE MARINE CHANNELS.

  d, e. Masses of floating ice carrying fragments of rock.)

Suppose the highest peaks of the ridges A, B, C in the annexed diagram (Figure 53) to be alone above water, forming islands, and d e to be masses of floating ice, which drifted across the Canaan and Richmond valleys at a time when they were marine channels, separating islands or rather chains of islands, having a north-north-east and south-south-west direction. A fragment of ice such as d, freighted with a block from A, might run aground and add to the heap of erratics at the north-west base of the island (now ridge) B, or, passing through a sound between B and the next island of the same group, might float on till it reached the channel between B and C. Year after year two such exposed cliffs in the Canaan range as d and e of the map, Figure 50, undermined by the waves, might serve as the points of departure of blocks, composing the trains Numbers 5 and 6. It may be objected that oceanic currents could not always have had the same direction; this may be true, but during a short season of the year when the ice was breaking up the prevailing current may have always run south-east.

If it be asked why the blocks of each train are not more scattered, especially when far from their source, it may be observed that after passing through sounds separating islands, they issued again from a new and narrow starting-point; moreover, we must not exaggerate the regularity of the trains, as their width is sometimes twice as great in one place in as another; and Number 6 sends off a branch at p, which joins Number 5. There are also stragglers, or large blocks here and there in the spaces between the two trains. As to the distance to which any given block would be carried, that must have depended on a variety of circumstances; such as the strength of the current, the direction of the wind, the weight of the block or the quantity and draught of the ice attached to it. The smaller fragments would, on the whole, have the best chance of going farthest; because, in the first place, they were more numerous, and then, being lighter, they required less ice to float them, and would not ground so readily on shoals, or if stranded, would be more easily started again on their travels. Many of the blocks, which at first sight seem to consist of single masses, are found when examined to be made up of two, three, or more pieces divided by natural joints. In the case of a second removal by ice, one or more portions would become detached and be drifted to different points further on. Whenever this happened, the original size would be lessened, and the angularity of the block previously worn by the breakers would be restored, and this tendency to split may explain why some of the far-transported fragments remain very angular.

These various considerations may also account for the fact that the average size of the blocks of all the seven trains laid down on the plan, Figure 50, lessens sensibly in proportion as we recede from the principal points of departure of particular kinds of erratics, yet not with any regularity, a huge block now and then recurring when the rest of the train consists of smaller ones.

All geologists acquainted with the district now under consideration are agreed that the mountain ranges A, B, and c, as well as the adjoining valleys, had assumed their actual form and position before the drift and erratics accumulated on and in them and before the surface of the fixed rocks was polished and furrowed. I have the less hesitation in ascribing the transporting power to coast-ice, because I saw in 1852 an angular block of sandstone, 8 feet in diameter, which had been brought down several miles by ice only three years before to the mouth of the Petitcodiac estuary, in Nova Scotia, where it joins the Bay of Fundy; and I ascertained that on the shores of the same bay, at the South Joggins, in the year 1850, much larger blocks had been removed by coast-ice, and after they had floated half a mile, had been dropped in salt water by the side of a pier built for loading vessels with coal, so that it was necessary at low tide to blast these huge ice-borne rocks with gunpowder in order that the vessels might be able to draw up alongside the pier. These recent exemplifications of the vast carrying powers of ice occurred in latitude 46 degrees north (corresponding to that of Bordeaux), in a bay never invaded by icebergs.

I may here remark that a sheet of ice of moderate thickness, if it extend over a wide area, may suffice to buoy up the largest erratics which fall upon it. The size of these will depend, not on the intensity of the cold but on the manner in which the rock is jointed, and the consequent dimensions of the blocks into which it splits when falling from an undermined cliff.

When I first endeavoured in the "Principles of Geology" in 1830,* to explain the causes, both of the warmer and colder climates which have at former periods prevailed on the globe, I referred to successive variations in the height and position of the land and its extent relatively to the sea in polar and equatorial latitudes—also to fluctuations in the course of oceanic currents and other geographical conditions, by the united influence of which I still believe the principal revolutions in the meteorological state of the atmosphere at different geological periods have been brought about.

     (* 1st edition chapter 7; 9th edition ibid.)

The Gulf Stream was particularly alluded to by me as moderating the winter climate of northern Europe and as depending for its direction on temporary and accidental peculiarities in the shape of the land, especially that of the narrow Straits of Bahama, which a slight modification in the earth's crust would entirely alter.

Mr. Hopkins, in a valuable essay on the causes of former changes of climate,*nhas attempted to calculate how much the annual temperature of Europe would be lowered if this Gulf Stream were turned in some other and new direction, and estimates the amount at about six or seven degrees of Fahrenheit.

     (* Hopkins, "Quarterly Journal of the Geological Society"
     volume 8 1852 page 56.)

He also supposes that if at the same time a considerable part of northern and central Europe were submerged, so that a cold current from the arctic seas should sweep over it, an additional refrigeration of three or four degrees would be produced. He has speculated in the same essay on the effects which would be experienced in the eastern hemisphere if the same mighty current of warm water, instead of crossing the Atlantic, were made to run northwards from the Gulf of Mexico through the region now occupied by the valley of the Mississippi, and so onwards to the arctic regions.

After reflecting on what has been said in the thirteenth chapter of the submergence and re-elevation of the British Isles and the adjoining parts of Europe, and the rising and sinking of the Alps and the basins of some of the great rivers flowing from that chain, since the commencement of the glacial period, a geologist will not be disposed to object to the theory above adverted to, on the score of its demanding too much conversion of land into sea, or almost any amount of geographical change in Pleistocene times. But a difficulty of another kind presents itself. We have seen that, during the glacial period, the cold in Europe extended much farther south than it does at present, and in this chapter we have demonstrated that in North America the cold also extended no less than 10 degrees of latitude still farther southwards than in Europe; so that if a great body of heated water, instead of flowing north-eastward, were made to pass through what is now the centre of the American continent towards the Arctic Circle, it could not fail to mitigate the severity of the winter's cold in precisely those latitudes where the cold was greatest and where it has left monuments of ice-action surpassing in extent any exhibited on the European side of the ocean.

In the actual state of the globe, the isothermal lines, or lines of equal winter temperature when traced westward from Europe to North America bend 10 degrees south, there being a marked excess of winter cold in corresponding latitudes west of the Atlantic. During the glacial period, viewing it as a whole, we behold signs of a precisely similar deflection of these same isothermal lines when followed from east to west; so that if, in the hope of accounting for the former severity of glacial action in Europe, we suppose the absence of the Gulf Stream and imagine a current of equivalent magnitude to have flowed due north from the Gulf of Mexico, we introduce, as we have just hinted, a source of heat into precisely that part of the continent where the extreme conditions of refrigeration are most manifest. Viewed in this light, the hypothesis in question would render the glacial phenomena described in the present chapter more perplexing and anomalous than ever. But here another question arises, whether the eras at which the maximum of cold was attained on the opposite sides of the Atlantic were really contemporaneous? We have now discovered not only that the glacial period was of vast duration, but that it passed through various phases and oscillations of temperature; so that, although the chief polishing and furrowing of the rocks and transportation of erratics in Europe and North America may have taken place contemporaneously, according to the ordinary language of geology, or when the same testacea and the same Pleistocene assemblage of mammalia flourished, yet the extreme development of cold on the opposite sides of the ocean may not have been strictly simultaneous, but on the contrary the one may have preceded or followed the other by a thousand or more than a thousand centuries.

It is probable that the greatest refrigeration of Norway, Sweden, Scotland, Wales, the Vosges, and the Alps coincided very nearly in time; but when the Scandinavian and Scotch mountains were encrusted with a general covering of ice, similar to that now enveloping Greenland, this last country may not have been in nearly so glacial a condition as now, just as we find that the old icy crust and great glaciers, which have left their mark on the mountains of Norway and Sweden, have now disappeared, precisely at a time when the accumulation of ice in Greenland is so excessive. In other words, we see that in the present state of the northern hemisphere, at the distance of about 1500 miles, two meridional zones enjoying very different conditions of temperature may co-exist, and we are, therefore, at liberty to imagine some former alternations of colder and milder climates on the opposite sides of the ocean throughout the Pleistocene era of a compensating kind, the cold on the one side balancing the milder temperature on the other. By assuming such a succession of events we can more easily explain why there has not been a greater extermination of species, both terrestrial and aquatic, in polar and temperate regions during the glacial epoch, and why so many species are common to pre-glacial and post-glacial times.

The numerous plants which are common to the temperate zones north and south of the equator have been referred by Mr. Darwin and Dr. Hooker to migrations which took place along mountain chains running from north to south during some of the colder phases of the glacial epoch.*

     (* Darwin, "Origin of Species" chapter 11 page 365; Hooker,
     "Flora of Australia" Introduction page 18 1859.)

Such an hypothesis enables us to dispense with the doctrine that the same species ever originated independently in two distinct and distant areas; and it becomes more feasible if we admit the doctrine of the co-existence of meridional belts of warmer and colder climate, instead of the simultaneous prevalence of extreme cold both in the eastern and western hemisphere. It also seems necessary, as colder currents of water always flow to lower latitudes, while warmer ones are running towards polar regions, that some such compensation should take place, and that an increase of cold in one region must to a certain extent be balanced by a mitigation of temperature elsewhere.

Sir John F. Herschel, in his recent work on "Physical Geography," when speaking of the open sea which is caused in part of the polar regions by the escape of ice through Behring's Straits, and the flow of warmer water northwards through the same channel, observes that these straits, by which the continents of Asia and North America are now parted, "are only thirty miles broad where narrowest and only twenty-five fathoms in their greatest depth." But "this narrow channel," he adds, "is yet important in the economy of nature, inasmuch as it allows a portion of the circulating water from a warmer region to find its way into the polar basin, aiding thereby not only to mitigate the extreme rigour of the polar cold, but to prevent in all probability a continual accretion of ice, which else might rise to a mountainous height."*

     (* Herschel's "Physical Geography" page 41 1861.)

Behring's Straits, here alluded to, happen to agree singularly in width and depth with the Straits of Dover, the difference in depth not being more than 3 or 4 feet; so that at the rate of upheaval, which is now going on in many parts of Scandinavia, of 2 1/2 feet in a century, such straits might be closed in 3000 years, and a vast accumulation of ice to the northward commence forthwith.

But, on the other hand, although such an accumulation might spread its refrigerating influence for many miles southwards beyond the new barrier, the warm current which now penetrates through the straits, and which at other times is chilled by floating ice issuing from them, would when totally excluded from all communication with the icy sea have its temperature raised and its course altered, so that the climate of some other area must immediately begin to improve.

There is still another probable cause of a vast change in the temperature of central Europe in comparatively modern times, to which no allusion has yet been made; namely, the conversion of the great desert of the Sahara from sea into land since the commencement of the Pleistocene period. When that vast region was still submerged, no sirocco blowing for days in succession carried its hot blasts from a wide expanse of burning sand across the Mediterranean. The south winds were comparatively cool, allowing the snows of the Alps to augment to an extent which the colossal dimensions of the moraines of extinct glaciers can alone enable us to estimate.

The scope and limits of this volume forbid my pursuing these speculations and reasonings farther; but I trust I have said enough to show that the monuments of the glacial period, when more thoroughly investigated, will do much towards expanding our views as to the antiquity of the fauna and flora now contemporary with Man, and will therefore enable us the better to determine the time at which Man began in the northern hemisphere to form part of the existing fauna. [Note 37]

Share on Twitter Share on Facebook