SELECTION.

  Mr. Darwin's Theory of the Origin of Species by Natural Selection.
  Memoir by Mr. Wallace.
  Manner in which favoured Races prevail in the Struggle for Existence.
  Formation of new Races by breeding.
  Hypotheses of definite and indefinite Modifiability equally arbitrary.
  Competition and Extinction of Races.
  Progression not a necessary Accompaniment of Variation.
  Distinct Classes of Phenomena which Natural Selection explains.
  Unity of Type, Rudimentary Organs, Geographical Distribution,
     Relation of the extinct to the living Fauna and Flora, and
     mutual Relations of successive Groups of Fossil Forms.
  Light thrown on Embryological Development by Natural Selection.
  Why large Genera have more variable Species than small ones.
  Dr. Hooker on the Evidence afforded by the Vegetable Kingdom
     in favour of Creation by Variation.
  Steenstrup on alternation of Generations.
  How far the Doctrine of Independent Creation is opposed to the
     Laws now governing the Migration of Species.

For many years after the promulgation of Lamarck's doctrine of progressive development, geologists were much occupied with the question whether the past changes in the animate and inanimate world were brought about by sudden and paroxysmal action, or gradually and continuously, by causes differing neither in kind nor degree from those now in operation.

The anonymous author of "The Vestiges of Creation" published in 1844 a treatise, written in a clear and attractive style, which made the English public familiar with the leading views of Lamarck on transmutation and progression, but brought no new facts or original line of argument to support those views, or to combat the principal objections which the scientific world entertained against them.

No decided step in this direction was made until the publication in 1858 of two papers, one by Mr. Darwin and another by Mr. Wallace, followed in 1859 by Mr. Darwin's celebrated work on "The Origin of Species by Means of Natural Selection; or, the Preservation of favoured Races in the Struggle for Life." The author of this treatise had for twenty previous years strongly inclined to believe that variation and the ordinary laws of reproduction were among the secondary causes always employed by the Author of nature, in the introduction from time to time of new species into the world, and he had devoted himself patiently to the collecting of facts and making of experiments in zoology and botany, with a view of testing the soundness of the theory of transmutation. Part of the manuscript of his projected work was read to Dr. Hooker as early as 1844 and some of the principal results were communicated to me on several occasions. [Note 40] Dr. Hooker and I had repeatedly urged him to publish without delay, but in vain, as he was always unwilling to interrupt the course of his investigations; until at length Mr. Alfred R. Wallace, who had been engaged for years in collecting and studying the animals of the East Indian archipelago, thought out independently for himself one of the most novel and important of Mr. Darwin's theories. This he embodied in an essay "On the Tendency of Varieties to depart indefinitely from the original Type." It was written at Ternate in February 1858, and sent to Mr. Darwin with a request that it might be shown to me if thought sufficiently novel and interesting. Dr. Hooker and I were of opinion that it should be immediately printed, and we succeeded in persuading Mr. Darwin to allow one of the manuscript chapters of his "Origin of Species," entitled "On the Tendency of Species to form Varieties, and on the Perpetuation of Species and Varieties by natural Means of Selection," to appear at the same time.*

     (* See "Proceedings of the Linnaean Society" 1858.)

By reference to these memoirs it will be seen that both writers begin by applying to the animal and vegetable worlds the Malthusian doctrine of population, or its tendency to increase in a geometrical ratio, while food can only be made to augment even locally in an arithmetical one. There being therefore no room or means of subsistence for a large proportion of the plants and animals which are born into the world, a great number must annually perish. Hence there is a constant struggle for existence among the individuals which represent each species and the vast majority can never reach the adult state, to say nothing of the multitudes of ova and seeds which are never hatched or allowed to germinate. Of birds it is estimated that the number of those which die every year equals the aggregate number by which the species to which they respectively belong is on the average permanently represented.

The trial of strength which must decide what individuals are to survive and what to succumb occurs in the season when the means of subsistence are fewest, or enemies most numerous, or when the individuals are enfeebled by climate or other causes; and it is then that those varieties which have any, even the slightest, advantage over others come off victorious. They may often owe their safety to what would seem to a casual observer a trifling difference, such as a darker or lighter shade of colour rendering them less visible to a species which preys upon them, or sometimes to attributes more obviously advantageous, such as greater cunning or superior powers of flight or swiftness of foot. These peculiar qualities and faculties, bodily and instinctive, may enable them to outlive their less favoured rivals, and being transmitted by the force of inheritance to their offspring will constitute new races, or what Mr. Darwin calls "incipient species." If one variety, being in other respects just equal to its competitors, happens to be more prolific, some of its offspring will stand a greater chance of being among those which will escape destruction, and their descendants, being in like manner very fertile, will continue to multiply at the expense of all less prolific varieties.

As breeders of domestic animals, when they choose certain varieties in preference to others to breed from, speak technically of their method as that of "selecting," Mr. Darwin calls the combination of natural causes, which may enable certain varieties of wild animals or plants to prevail over others of the same species, "natural selection."

A breeder finds that a new race of cattle with short horns or without horns may be formed in the course of several generations by choosing varieties having the most stunted horns as his stock from which to breed; so nature, by altering in the course of ages, the conditions of life, the geographical features of a country, its climate, the associated plants and animals, and consequently the food and enemies of a species and its mode of life, may be said, by this means to select certain varieties best adapted for the new state of things. Such new races may often supplant the original type from which they have diverged, although that type may have been perpetuated without modification for countless anterior ages in the same region, so long as it was in harmony with the surrounding conditions then prevailing.

Lamarck, when speculating on the origin of the long neck of the giraffe, imagined that quadruped to have stretched himself up in order to reach the boughs of lofty trees, until by continued efforts and longing to reach higher he obtained an elongated neck. Mr. Darwin and Mr. Wallace simply suppose that, in a season of scarcity, a longer-necked variety, having the advantage in this respect over most of the herd, as being able to browse on foliage out of their reach, survived them and transmitted its peculiarity of cervical conformation to its successors.

By the multiplying of slight modifications in the course of thousands of generations and by the handing down of the newly-acquired peculiarities by inheritance, a greater and greater divergence from the original standard is supposed to be effected, until what may be called a new species, or in a greater lapse of time a new genus will be the result.

Every naturalist admits that there is a general tendency in animals and plants to vary; but it is usually taken for granted, though he have no means of proving the assumption to be true, that there are certain limits beyond which each species cannot pass under any circumstances or in any number of generations. Mr. Darwin and Mr. Wallace say that the opposite hypothesis, which assumes that every species is capable of varying indefinitely from its original type, is not a whit more arbitrary, and has this manifest claim to be preferred, that it will account for a multitude of phenomena which the ordinary theory is incapable of explaining.

We have no right, they say, to assume, should we find that a variable species can no longer be made to vary in a certain direction, that it has reached the utmost limit to which it might under more favourable conditions or if more time were allowed be made to diverge from the parent type.

Hybridisation is not considered by Mr. Darwin as a cause of new species, but rather as tending to keep variation within bounds. Varieties which are nearly allied cross readily with each other, and with the parent stock, and such crossing tends to keep the species true to its type, while forms which are less nearly related, although they may intermarry, produce no mule offspring capable of perpetuating their kind.

The competition of races and species, observes Mr. Darwin, is always most severe between those which are most closely allied and which fill nearly the same place in the economy of nature. Hence when the conditions of existence are modified the original stock runs great risk of being superseded by some one of its modified offshoots. The new race or species may not be absolutely superior in the sum of its powers and endowments to the parent stock, and may even be more simple in structure and of a lower grade of intelligence, as well as of organisation, provided on the whole it happens to have some slight advantage over its rivals. Progression, therefore, is not a necessary accompaniment of variation and natural selection, though when a higher organisation happens to be coincident with superior fitness to new conditions, the new species will have greater power and a greater chance of permanently maintaining and extending its ground. One of the principal claims of Mr. Darwin's theory to acceptance is that it enables us to dispense with a law of progression as a necessary accompaniment of variation. It will account equally well for what is called degradation, or a retrograde movement towards a simpler structure, and does not require Lamarck's continual creation of monads; for this was a necessary part of his system, in order to explain how, after the progressive power had been at work for myriads of ages, there were as many beings of the simplest structure in existence as ever.

Mr. Darwin argues, and with no small success, that all true classification in zoology and botany is in fact genealogical, and that community of descent is the hidden bond which naturalists have been unconsciously seeking, while they often imagined that they were looking for some unknown plan of creation.

As the "Origin of Species"* is in itself a condensed abstract of a much larger work not yet published [Note 41] I could not easily give an analysis of its contents within narrower limits than those of the original, but it may be useful to enumerate briefly some of the principal classes of phenomena on which the theory of "natural selection" would throw light.

     (* "Origin of Species" page 121.)

In the first place it would explain, says Mr. Darwin, the unity of type which runs through the whole organic world, and why there is sometimes a fundamental agreement in structure in the same class of beings which is quite independent of their habits of life, for such structure, derived by inheritance from a remote progenitor, has been modified in the course of ages in different ways according to the conditions of existence. It would also explain why all living and extinct beings are united, by complex radiating and circuitous lines of affinity with one another into one grand system;* also, there having been a continued extinction of old races and species in progress and a formation of new ones by variation, why in some genera which are largely represented, or to which a great many species belong, many of these are closely but unequally related; also, why there are distinct geographical provinces of species of animals and plants, for after long isolation by physical barriers each fauna and flora by varying continually must become distinct from its ancestral type, and from the new forms assumed by other descendants which have diverged from the same stock.

     (* "Origin" page 498.)

The theory of indefinite modification would also explain why rudimentary organs are so useful in classification, being the remnants preserved by inheritance of organs which the present species once used—as in the case of the rudiments of eyes in insects and reptiles inhabiting dark caverns, or of the wings of birds and beetles which have lost all power of flight. In such cases the affinities of species are often more readily discerned by reference to these imperfect structures than by others of much more physiological importance to the individuals themselves.

The same hypothesis would explain why there are no mammalia in islands far from continents, except bats, which can reach them by flying; and also why the birds, insects, plants, and other inhabitants of islands, even when specifically unlike, usually agree generically with those of the nearest continent, it being assumed that the original stock of such species came by migration from the nearest land.

Variation and natural selection would also afford a key to a multitude of geological facts otherwise wholly unaccounted for, as for example why there is generally an intimate connection between the living animals and plants of each great division of the globe and the extinct fauna and flora of the Post-Tertiary or Tertiary formations of the same region; as, for example, in North America, where we not only find among the living mollusca peculiar forms foreign to Europe, such as Gnathodon and Fulgur (a subgenus of Fusus), but meet also with extinct species of those same genera in the Tertiary fauna of the same part of the world. In like manner, among the mammalia we find in Australia not only living kangaroos and wombats, but fossil individuals of extinct species of the same genera. So also there are recent and fossil sloths, armadilloes and other Edentata in South America, and living and extinct species of elephant, rhinoceros, tiger, and bear in the great Europeo-Asiatic continent. The theory of the origin of new species by variation will also explain why a species which has once died out never reappears and why the fossil fauna and flora recede farther and farther from the living type in proportion as we trace them back to remoter ages. It would also account for the fact that when we have to intercalate a new set of fossiliferous strata between two groups previously known, the newly discovered fossils serve to fill up gaps between specific or generic types previously familiar to us, supplying often the missing links of the chain, which, if transmutation is accepted, must once have been continuous.

One of the most original speculations in Mr. Darwin's work is derived from the fact that, in the breeding of animals, it is often observed that at whatever age any variation first appears in the parent, it tends to reappear at a corresponding age in the offspring. Hence the young individuals of two races which have sprung from the same parent stock are usually more like each other than the adults. Thus the puppies of the greyhound and bull-dog are much more nearly alike in their proportions than the grown-up dogs, and in like manner the foals of the carthorse and racehorse than the adult individuals. For the same reason we may understand why the species of the same genus, or genera of the same family, resemble each other more nearly in their embryonic than in their more fully developed state, or how it is that in the eyes of most naturalists the structure of the embryo is even more important in classification than that of the adult, "for the embryo is the animal in its less modified state, and in so far it reveals the structure of its progenitor. In two groups of animals, however much they may at present differ from each other in structure and habits, if they pass through the same or similar embryonic stages, we may feel assured that they have both descended from the same or nearly similar parents, and are therefore in that degree closely related. Thus community in embryonic structure reveals community of descent, however much the structure of the adult may have been modified."*

     (* Darwin, "Origin" etc. page 448.)

If then there had been a system of progressive development, the successive changes through which the embryo of a species of a high class, a mammifer for example, now passes, may be expected to present us with a picture of the stages through which, in the course of ages, that class of animals has successively passed in advancing from a lower to a higher grade. Hence the embryonic states exhibited one after the other by the human individual bear a certain amount of resemblance to those of the fish, reptile, and bird before assuming those of the highest division of the vertebrata.

Mr. Darwin, after making a laborious analysis of many floras, found that those genera which are represented by a large number of species contain a greater number of variable species, relatively speaking, than the smaller genera or those less numerously represented. This fact he adduces in support of his opinion that varieties are incipient species, for he observes that the existence of the larger genera implies that the manufacturing of species has been active in the period immediately preceding our own, in which case we ought generally to find the same forces still in full activity, more especially as we have every reason to believe the process by which new species are produced is a slow one.*

     (* "Origin of Species" chapter 2 page 56.)

Dr. Hooker tells us that he was long disposed to doubt this result, as he was acquainted with so many variable small genera, but after examining Mr. Darwin's data, he was compelled to acquiesce in his generalisation.*

     (* "Introductory Essay to the Flora of Australia" page 6.)

It is one of those conclusions, to verify which requires the investigation of many thousands of species, and to which exceptions may easily be adduced both in the animal and vegetable kingdoms, so that it will be long before we can expect it to be thoroughly tested, and if true, fairly appreciated. Among the most striking exceptions will be some genera still large, but which are beginning to decrease, the conditions favourable to their former predominance having already begun to change. To many, this doctrine of "natural selection," or "the preservation of favoured races in the struggle for life," seems so simple, when once clearly stated, and so consonant with known facts and received principles, that they have difficulty in conceiving how it can constitute a great step in the progress of science. Such is often the case with important discoveries, but in order to assure ourselves that the doctrine was by no means obvious, we have only to refer back to the writings of skilful naturalists who attempted in the earlier part of the nineteenth century to theorise on this subject, before the invention of this new method of explaining how certain forms are supplanted by new ones and in what manner these last are selected out of innumerable varieties and rendered permanent.

Share on Twitter Share on Facebook