When treating in the eighth chapter of the dearth of human bones in alluvium containing flint implements in abundance, I pointed out that it is not part of the plan of Nature to write everywhere, and at all times, her autobiographical memoirs. On the contrary, her annals are local and exceptional from the first, and portions of them are afterwards ground into mud, sand, and pebbles, to furnish materials for new strata. Even of those ancient monuments now forming the crust of the earth, which have not been destroyed by rivers and the waves of the sea, or which have escaped being melted by volcanic heat, three-fourths lie submerged beneath the ocean, and are inaccessible to Man; while of those which form the dry land, a great part are hidden for ever from our observation by mountain masses, thousands of feet thick, piled over them.
Mr. Darwin has truly said that the fossiliferous rocks known to geologists consist, for the most part, of such as were formed when the bottom of the sea was subsiding. This downward movement protects the new deposits from denudation, and allows them to accumulate to a great thickness; whereas sedimentary matter, thrown down where the sea-bottom is rising, must almost invariably be swept away by the waves as fast as the land emerges.
When we reflect, therefore, on the fractional state of the annals which are handed down to us, and how little even these have as yet been studied, we may wonder that so many geologists should attribute every break in the series of strata and every gap in the past history of the organic world to catastrophes and convulsions of the earth's crust or to leaps made by the creational force from species to species, or from class to class. For it is clear that, even had the series of monuments been perfect and continuous at first (an hypothesis quite opposed to the analogy of the working of causes now in action), it could not fail to present itself to our eyes in a broken and disconnected state.
Those geologists who have watched the progress of discovery during the last half century can best appreciate the extent to which we may still hope by future exertion to fill up some of the wider chasms which now interrupt the regular sequence of fossiliferous rocks. The determination, for example, of late years of the true place of the Hallstadt and St. Cassian beds on the north and south flanks of the Austrian Alps, has revealed to us, for the first time, the marine fauna of a period (that of the Upper Trias) of which, until lately, but little was known. In this case, the palaeontologist is called upon suddenly to intercalate about 800 species of Mollusca and Radiata, between the fauna of the Lower Lias and that of the Middle Trias. The period in question was previously believed, even by many a philosophical geologist, to have been comparatively barren of organic types. In England, France, and northern Germany, the only known strata of Upper Triassic date had consisted almost entirely of fresh or brackish-water beds, in which the bones of terrestrial and amphibious reptiles were the most characteristic fossils. The new fauna was, as might have been expected, in part peculiar, not a few of the species of Mollusca being referable to new genera; while some species were common to the older, and some to the newer rocks. On the whole, the new forms have helped greatly to lessen the discordance, not only between the Lias and Trias, but also generally between Palaeozoic and Mesozoic formations. Thus the genus Orthoceras has been for the first time recognised in a Mesozoic deposit, and with it we find associated, for the first time, large Ammonites with foliated lobes, a form never seen before below the Lias; also the Ceratites, a family of Cephalopods never before met with in the Upper Trias, and never before in the same stratum with such lobed Ammonites.
We can now no longer doubt that should we hereafter have an opportunity of studying an equally rich marine fauna of the age of the Lower Trias (or Bunter Sandstein), the marked hiatus which still separates the Triassic and Permian eras would almost disappear.
Archaeopteryx macrurus, Owen.
I could readily add a copious list of minor deposits, belonging to the Primary, Secondary and Tertiary series, which we have been called upon in like manner to intercalate in the course of the last quarter of a century into the chronological series previously known; but it would lead me into too long a digression. I shall therefore content myself with pointing out that it is not simply new formations which are brought to light from year to year, reminding us of the elementary state of our knowledge of palaeontology, but new types also of structure are discovered in rocks whose fossil contents were supposed to be peculiarly well known.
The last and most striking of these novelties is "the feathered fossil" from the lithographic stone of Solenhofen.
Until the year 1858, no well-determined skeleton of a bird had been detected in any rocks older than the Tertiary. In that year, Mr. Lucas Barrett found in the Cambridge Greensand of the Cretaceous series, the femur, tibia, and some other bones of a swimming bird, supposed by him to be of the gull tribe. His opinion as to the ornithic character of the remains was afterwards confirmed by Professor Owen.
The Archaeopteryx macrurus, Owen, recently acquired by the British Museum, affords a second example of the discovery of the osseous remains of a bird in strata older than the Eocene. It was found in the great quarries of lithographic limestone at Solenhofen in Bavaria, the rock being a member of the Upper Oolite.
It was at first conjectured in Germany, before any experienced osteologist had had an opportunity of inspecting the original specimen, that this fossil might be a feathered Pterodactyl (flying reptiles having been often met with in the same stratum), or that it might at least supply some connecting links between a reptile and a bird. But Professor Owen, in a memoir lately read to the Royal Society (November 20, 1862), has shown that it is unequivocally a bird, and that such of its characters as are abnormal are by no means strikingly reptilian. The skeleton was lying on its back when embedded in calcareous sediment, so that the ventral part is exposed to view. It is about 1 foot 8 inches long, and 1 foot across, from the apex of the right to that of the left wing. The furculum, or merry-thought, which is entire, marks the fore part of the trunk; the ischium, scapula, and most of the wing and leg bones are preserved, and there are impressions of the quill feathers and of down on the body. The vanes and shafts of the feathers can be seen by the naked eye. Fourteen long quill feathers diverge on each side of the metacarpal and phalangial bones, and decrease in length from 6 inches to 1 inch. The wings have a general resemblance to those of gallinaceous birds. The tarso-metatarsal, or drumstick, exhibits at its distal end a trifid articular surface supporting three toes, as in birds. The furculum, pelvis, and bones of the tail are in their natural position. The tail consists of twenty vertebrae, each of which supports a pair of plumes. The length of the tail with its feathers is 11 1/2 inches, and its breadth 3 1/2. It is obtusely truncated at the end. In all living birds the tail-feathers are arranged in fan-shaped order and attached to a coccygean bone, consisting of several vertebrae united together, whereas in the embryo state these same vertebrae are distinct. The greatest number is seen in the ostrich, which has eighteen caudal vertebrae in the foetal state, which are reduced to nine in the adult bird, many of them having been anchylosed together. Professor Owen therefore considers the tail of the Archaeopteryx as exemplifying the persistency of what is now an embryonic character. The tail, he remarks, is essentially a variable organ; there are long-tailed bats and short-tailed bats, long-tailed rodents and short-tailed rodents, long-tailed pterodactyls and short-tailed pterodactyls.
The Archaeopteryx differs from all known birds, not only in the structure of its tail, but in having two, if not three, digits in the hand; but there is no trace of the fifth digit of the winged reptile.
The conditions under which the skeleton occurs are such, says Professor Owen, as to remind us of the carcass of a gull which has been a prey to some Carnivore, which had removed all the soft parts, and perhaps the head, nothing being left but the bony legs and the indigestible quill-feathers. But since Professor Owen's paper was read, Mr. John Evans, whom I have often had occasion to mention in the earlier chapters of this work, seems to have found what may indicate a part of the missing cranium. He has called our attention to a smooth protuberance on the otherwise even surface of the slab of limestone which seems to be the cast of the brain or interior of the skull. Some part even of the cranial bone itself appears to be still buried in the matrix. Mr. Evans has pointed out the resemblance of this cast to one taken by himself from the cranium of a crow, and still more to that of a jay, observing that in the fossil the median line which separates the two hemispheres of the brain is visible.
To conclude, we may learn from this valuable relic how rashly the existence of Birds at the epoch of the Secondary rocks has been questioned, simply on negative evidence, and secondly, how many new forms may be expected to be brought to light in strata with which we are already best acquainted, to say nothing of the new formations which geologists are continually discovering.