But it may perhaps be said that the mammalia afford more conspicuous examples than do the mollusca, insects, or plants of the wide gaps which separate species and genera, and that if in this higher class such a multitude of transitional forms had ever existed as would be required to unite the Tertiary and Recent species into one series or net-work of allied or transitional forms, they could not so entirely have escaped observation whether in the fossil or living fauna. A zoologist who entertains such an opinion would do well to devote himself to the study of some one genus of mammalia, such as the elephant, rhinoceros, hippopotamus, bear, horse, ox, or deer; and after collecting all the materials he can get together respecting the extinct and Recent species, decide for himself whether the present state of science justifies his assuming that the chain could never have been continuous, the number of the missing links being so great.
Among the extinct species formerly contemporary with man, no fossil quadruped has so often been alluded to in this work as the mammoth, Elephas primigenius. From a monograph on the proboscidians by Dr. Falconer, it appears that this species represents one extreme of a type of which the Pliocene Mastodon borsoni represents the other. Between these extremes there are already enumerated by Dr. Falconer no less than twenty-six species, some of them ranging as far back in time as the Miocene period, others still living, like the Indian and African forms. Two of these species, however, he has always considered as doubtful, Stegodon ganesa, probably a mere variety of one of the others, and Elephas priscus of Goldfuss, founded partly on specimens of the African elephant, assumed by mistake to be fossil, and partly on some aberrant forms of E. antiquus.
The first effect of the intercalation of so many intermediate forms between the two most divergent types, has been to break down almost entirely the generic distinction between Mastodon and Elephas. Dr. Falconer, indeed, observes that Stegodon (one of several subgenera which he has founded) constitutes an intermediate group, from which the other species diverge through their dental characters, on the one side into the mastodons, and on the other into the Elephants.*
(* "Quarterly Journal of the Geological Society" volume 13
1857 page 314.)
The next result is to diminish the distance between the several members of each of these groups.
Dr. Falconer has discovered that no less than four species of elephant were formerly confounded together under the title of Elephas primigenius, whence its supposed ubiquity in Pleistocene times, or its wide range over half the habitable globe. But even when this form has been thus restricted in its specific characters, it has still its geographical varieties; for the mammoth's teeth brought from America may in most instances, according to Dr. Falconer, be distinguished from those proper to Europe. On this American variety Dr. Leidy has conferred the name of E. americanus. Another race of the same mammoth (as determined by Dr. Falconer) existed, as we have seen, before the Glacial period, or at the time when the buried forest of Cromer and the Norfolk cliffs was deposited; and the Swiss geologists have lately found remains of the mammoth in their country, both in pre-glacial and post-glacial formations.
Since the publication of Dr. Falconer's monograph, two other species of elephant, F. mirificus, Leidy, and F. imperator, have been obtained from the Pliocene formations of the Niobrara Valley in Nebraska, one of which, however, may possibly be found hereafter to be the same as E. columbi, Falc. A remarkable dwarf species also (Elephas melitensis) has been discovered, belonging, like the existing E. africanus, to the group Loxodon. This species has been established by Dr. Falconer on remains found by Captain Spratt R.N. in a cave in Malta.*
(* "Proceedings of the Geological Society" London 1862.)
How much the difficulty of discriminating between the fossil representatives of this genus may hereafter augment, when all the species with their respective geographical varieties are known, may be inferred from the following fact—Professor H. Schlegel, in a recently published memoir, endeavours to show that the living elephant of Sumatra agrees with that of Ceylon, but is a distinct species from that of Continental India, being distinguishable by the number of its dorsal vertebrae and ribs, the form of its teeth, and other characteristics.*
(* Schlegel, "Natural History Review" Number 5 1862 page
72.)
Dr. Falconer, on the other hand, considers these two living species as mere geographical varieties, the characters referred to not being constant, as he has ascertained, on comparing different individuals of E. indicus in different parts of Bengal in which the ribs vary from nineteen to twenty, and different varieties of E. africanus in which they vary from twenty to twenty-one.
An inquiry into the various species of the genus Rhinoceros, recent and fossil, has led Dr. Falconer to analogous results, as might be inferred from what was said in Chapter 10, and as a forthcoming memoir by the same writer will soon more fully demonstrate.
Among the fossils brought in 1858 by Mr. Hayden from the Niobrara Valley, Dr. Leidy describes a rhinoceros so like the Asiatic species, R. indicus, that he at first referred it to the same, and, what is most singular, he remarks generally of the Pliocene fauna of that part of North America that it is far more related in character to the Pleistocene and Recent fauna of Europe than to that now inhabiting the American continent.
It seems indeed more and more evident that when we speculate in future on the pedigree of any extinct quadruped which abounds in the drift or caverns of Europe, we shall have to look to North and South America as a principal source of information. Thirty years ago, if we had been searching for fossil types which might fill up a gap between two species or genera of the horse tribe (or great family of the Solipedes), we might have thought it sufficient to have got together as ample materials as we could obtain from the continents of Europe, Africa, and Asia. We might have presumed that as no living representative of the equine family, whether horse, ass, zebra, or quagga, had been furnished by North or South America when those regions were first explored by Europeans, a search in the transatlantic world for fossil species might be dispensed with. But how different is the prospect now opening before us! Mr. Darwin first detected the remains of a fossil horse during his visit to South America, since which two other species have been met with on the same continent, while in North America, in the valley of the Nebraska alone, Mr. Hayden, besides a species not distinguishable from the domestic horse, has obtained, according to Dr. Leidy, representatives of five other fossil genera of Solipedes. These he names, Hipparion, Protohippus, Merychippus, Hypohippus, and Parahippus. On the whole, no less than twelve equine species, belonging to seven genera (including the Miocene Anchitherium of Nebraska), being already detected in the Tertiary and Post-Tertiary formations of the United States.*
(* "Proceedings of the Academy of Natural Science"
Philadelphia for 1858 page 89.)
Professors Unger* and Heer** have advocated, on botanical grounds, the former existence of an Atlantic continent during some part of the Tertiary period, as affording the only plausible explanation that can be imagined, of the analogy between the Miocene flora of Central Europe and the existing flora of Eastern America. Professor Oliver, on the other hand, after showing how many of the American types found fossil in Europe are common to Japan, inclines to the theory, first advanced by Dr. Asa Gray, that the migration of species, to which the community of types in the eastern states of North America and the Miocene flora of Europe is due, took place when there was an overland communication from America to eastern Asia between the fiftieth and sixtieth parallels of latitude, or south of Behring Straits, following the direction of the Aleutian islands.*** By this course they may have made their way, at any epoch, Miocene, Pliocene, or Pleistocene, antecedently to the glacial epoch, to Mongolia, on the east coast of northern Asia.
(* "Die versunkene Insel Atlantis.")
(** "Flora tertiaria Helvetiae.")
(*** Oliver, Lecture at the Royal Institution, March 7, 1862.)
We have already seen that a large proportion of the living quadrupeds of Mongolia (34 out of 48) are specifically identical with those at present inhabiting the continent of Western Europe and the British Isles.
A monograph on the hippopotamus, bear, ox, stag, or any other genus of mammalia common in the European drift or caverns, might equally well illustrate the defective state of the materials at present at our command. We are rarely in possession of one perfect skeleton of any extinct species, still less of skeletons of both sexes, and of different ages. We usually know nothing of the geographical varieties of the Pleistocene and Pliocene species, least of all, those successive changes of form which they must have undergone in the preglacial epoch between the Upper Miocene and Pleistocene eras. Such being the poverty of our palaeontological data, we cannot wonder that osteologists are at variance as to whether certain remains found in caverns are of the same species as those now living; whether, for example, the Talpa fossilis is really the common mole, the Meles morreni the common badger, Lutra antiqua the otter of Europe, Sciurus priscus the squirrel, Arctomys primigenia the marmot, Myoxus fossilis the dormouse, Schmerling's Felis engihoulensis the European lynx, or whether Ursus spelaeus and Ursus priscus are not extinct races of the living brown bear (Ursus arctos).
If at some future period all the above-mentioned species should be united with their allied congeners, it cannot fail to enlarge our conception of the modifications which a species is capable of undergoing in the course of time, although the same form may appear absolutely immutable within the narrow range of our experience.