VI THÉORIE DE LORENTZ

On ne tarda pas à aller plus loin. D’après la théorie de Lorentz, les courants de conduction eux-mêmes seraient de véritables courants de convection : l’électricité resterait indissolublement attachée à certaines particules matérielles appelées électrons ; ce serait la circulation de ces électrons à travers les corps qui produirait les courants voltaïques, et ce qui distinguerait les conducteurs des isolants, c’est que les uns se laisseraient traverser par ces électrons, tandis que les autres arrêteraient leurs mouvements.

La théorie de Lorentz est très séduisante, elle donne une explication très simple de certain phénomènes dont les anciennes théories, même celle de Maxwell sous sa forme primitive, ne pouvaient rendre compte d’une façon satisfaisante, par exemple, l’aberration de la lumière, l’entraînement partiel des ondes lumineuses, la polarisation magnétique, l’expérience de Zeeman.

Quelques objections subsistaient encore. Les phénomènes dont un système est le siège semblaient devoir dépendre de la vitesse absolue de translation du centre de gravité de ce système, ce qui est contraire à l’idée que nous nous faisons de la relativité de l’espace. À la soutenance de M. Crémieu, M. Lippmann a mis cette objection sous une forme saisissante. Supposons deux conducteurs chargés, animés d’une même vitesse de translation. Ils sont en repos relatif ; cependant, chacun d’eux équivalant à un courant de convection, ils doivent s’attirer, et on pourrait, en mesurant cette attraction, mesurer leur vitesse absolue.

Non, répondaient les partisans de Lorentz ; ce que l’on mesurerait ainsi, ce n’est pas leur vitesse absolue, mais leur vitesse relative par rapport à l’éther, de sorte que le principe de relativité est sauf. Depuis, Lorentz a d’ailleurs trouvé une réponse plus subtile, mais beaucoup plus satisfaisante.

Quoi qu’il en soit de ces dernières objections, l’édifice de l’électrodynamique semble, au moins dans ses grandes lignes, définitivement construit ; tout se présente sous l’aspect le plus satisfaisant ; les théories d’Ampère et de Helmholtz, faites pour les courants ouverts qui n’existent plus, ne semblent plus avoir qu’un intérêt purement historique.

L’histoire de ces variations n’en sera pas moins instructive ; elle nous apprendra à quels pièges le savant est exposé, et comment il peut avoir l’espoir d’y échapper.

Share on Twitter Share on Facebook