VII

Les mathématiciens, je l’ai dit plus haut, s’efforcent toujours de généraliser les propositions qu’ils ont obtenues, et pour ne pas chercher d’autre exemple, nous avons tout à l’heure démontré l’égalité :

a + 1 = 1 + a

et nous nous en sommes servi ensuite pour établir l’égalité :

a + b = b + a

qui est manifestement plus générale.

Les mathématiques peuvent donc comme les autres sciences procéder du particulier au général.

Il y a là un fait qui nous aurait paru incompréhensible au début de cette étude, mais qui n’a plus pour nous rien de mystérieux, depuis que nous avons constaté les analogies de la démonstration par récurrence avec l’induction ordinaire.

Sans doute le raisonnement mathématique récurrent et le raisonnement physique inductif reposent sur des fondements différents, mais leur marche est parallèle, ils vont dans le même sens, c’est à dire du particulier au général.

Examinons la chose d’un peu plus près.

Pour démontrer l’égalité :

(1) a + 2 = 2 + a

il nous suffit d’appliquer deux fois la règle

a + 1 = 1 + a,

et d’écrire

(2) a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a.

L’égalité (2) ainsi déduite par voie purement analytique de l’égalité (1) n’en est pas cependant un simple cas particulier : elle est autre chose.

On ne peut donc même pas dire que dans la partie réellement analytique et déductive des raisonnements mathématiques, on procède du général au particulier, au sens ordinaire du mot.

Les deux membres de l’égalité (2) sont simplement des combinaisons plus compliquées que les deux membres de l’égalité (1) et l’analyse ne sert qu’à séparer les éléments qui entrent dans ces combinaisons et à en étudier les rapports.

Les mathématiciens procèdent donc « par construction », ils construisent des combinaisons de plus en plus compliquées. Revenant ensuite par l’analyse de ces combinaisons, de ces ensembles, pour ainsi dire, à leurs éléments primitifs, ils aperçoivent les rapports de ces éléments et en déduisent les rapports des ensembles eux-mêmes.

C’est là une marche purement analytique, mais ce n’est pas pourtant une marche du général au particulier, car les ensembles ne sauraient évidemment être regardés comme plus particuliers que leurs éléments.

On a attaché, et à juste titre, une grande importance à ce procédé de la « construction » et on a voulu y voir la condition nécessaire et suffisante des progrès des sciences exactes.

Nécessaire, sans doute, mais suffisante, non. Pour qu’une construction puisse être utile, pour qu’elle ne soit pas une vaine fatigue pour l’esprit, pour qu’elle puisse servir de marchepied à qui veut s’élever plus haut, il faut d’abord qu’elle possède une sorte d’unité, qui permette d’y voir autre chose que la juxtaposition de ses éléments.

Ou plus exactement, il faut qu’on trouve quelque avantage à considérer la construction plutôt que ses éléments eux-mêmes.

Quel peut être cet avantage ?

Pourquoi raisonner sur un polygone par exemple, qui est toujours décomposable en triangles, et non sur les triangles élémentaires ?

C’est qu’il y a des propriétés que l’on peut démontrer pour les polygones d’un nombre quelconques de côtés et qu’on peut ensuite appliquer immédiatement à un polygone particulier quelconque.

Le plus souvent, au contraire, ce n’est qu’au prix des plus longs efforts qu’on pourrait les retrouver en étudiant directement les rapports des triangles élémentaires. La connaissance du théorème général nous épargne ces efforts.

Une construction ne devient donc intéressante que quand on peut la ranger à côté d’autres constructions analogues, formant les espèces d’un même genre.

Si le quadrilatère est autre chose que la juxtaposition de deux triangles, c’est qu’il appartient au genre polygone.

Encore faut-il qu’on puisse démontrer les propriétés du genre sans être forcé de les établir successivement pour chacune des espèces.

Pour y arriver, il faut nécessairement remonter du particulier au général, en gravissant un ou plusieurs échelons.

Le procédé analytique « par construction » ne nous oblige pas à en descendre, mais il nous laisse au même niveau.

Nous ne pouvons nous élever que par l’induction mathématique, qui seule peut nous apprendre quelque chose de nouveau. Sans l’aide de cette induction différente à certains égards de l’induction physique, mais féconde comme elle, la construction serait impuissante à créer la science.

Observons en terminant que cette induction n’est possible que si une même opération peut se répéter indéfiniment. C’est pour cela que la théorie du jeu d’échec ne pourra jamais devenir une science, puisque les différents coups d’une même partie ne se ressemblent pas.

Share on Twitter Share on Facebook