CHAP. IV. ENGINE OF JAMES WATT.

Advantages of the Atmospheric Engine over that of Captain Savery. — It contained no new Principle. — Papin's Engine. — James Watt. — Particulars of his Life. — His first conceptions of the means of Economising Heat. — Principle of his projected Improvements.

(43.) Considered practically, the engine described in the last chapter possessed considerable advantages over that of Savery; and even at the present day this machine is not unfrequently used in districts where fuel is very abundant and cheap, the first cost being considerably less than that of a modern engine. The low pressure of the steam necessary to work it rendered the use of the atmospheric engine perfectly safe; there being only a bursting pressure of about 1lb. per inch, while in Savery's there was a bursting pressure amounting to 30lbs. The temperature of the steam not exceeding 216°, did not weaken or destroy the materials; while Savery's engines required steam raised from water at 267°, which in a short time rendered the engine unable to sustain the pressure.

The power of Savery's engines was also very limited, both as to the quantity of water raised, and the height to which it was elevated (34.). On the other hand, the atmospheric engine had no other limit than the dimensions of the piston. In estimating the power of these engines, however, we cannot allow the full atmospheric pressure as an effective force. The condensing water being mixed with the condensed steam, forms a quantity of hot water in the bottom of the cylinder, which, not being submitted to the atmospheric pressure (17.), produces a vapour which resists the descent of the piston. In practice we find that an allowance of at least 3lbs. per square inch should be made for the resistance of this vapour, and 1lb. per square inch for friction, &c.; so that the effective force will be found by subtracting these 4lbs. per square inch from the atmospheric pressure; which, if estimated at 15lbs., leaves an effective working power of about 11lbs. per square inch. This, however, is rather above what is commonly obtained.

Another advantage which this engine has over those of Savery, is the facility with which it might be applied to drive machinery by means of the working beam.

The merit of this engine as an invention, must be ascribed principally to its mechanism and combinations. We find in it no new principle; the agency of atmospheric pressure acting against a vacuum, or a partial vacuum, was long known. The formation of a vacuum by the condensation of steam had been suggested by Papin and Savery, and carried into practical effect by the latter. The mechanical power derivable from the direct pressure of the elastic force of steam was distinctly pointed out by Lord Worcester, and even prior to his time; the boiler, gauge-pipes, and regulator of the atmospheric engine, were evidently borrowed from Savery's engine. The idea of working a piston in a cylinder by the atmospheric pressure against a vacuum below, was suggested by Otto Guericke, an ingenious German philosopher, the inventor of the air-pump, and subsequently by Papin; and the use of a working beam could not have been unknown. Nevertheless, considerable credit must be acknowledged to be due to Newcomen for the judicious combination of those scattered principles. "The mechanism contrived by him," says Tredgold, "produces all the difference between an efficient and inefficient engine, and should be more highly valued than the fortuitous discovery of a new principle." The rapid condensation of steam by the injection of water, the method of clearing the cylinder of air and water after the stroke, are two contrivances not before in use, and which are quite essential to the effective operation of the engine: these are wholly due to Newcomen and his associates.

(44.) The patent of Newcomen was granted in 1705; and in 1707, Papin published a work, entitled "A New Method of raising Water by Fire," in which a steam engine is described, which would scarcely merit notice here but for the contests which have arisen upon the claims of different nations for a share in the invention of the steam engine. The publication of this work of Papin was nine years after Savery's patent, with which he acknowledges himself acquainted, and two years after Newcomen's. The following is a description of Papin's steam engine:—

An oval boiler, A (fig. 11.), is filled to about two thirds of its entire capacity with water, through a valve B in the top, which opens upwards, and is kept down by a lever carrying a sliding weight. The pressure on the valve is regulated by moving the weight to or from B, like the common steelyard. This boiler communicates with a cylinder, C, by a syphon tube furnished with a stopcock at D. The cylinder C has a valve F in the top, closed by a lever and weight similar to B, and a tube with a stopcock G opening into the atmosphere. In this cylinder is placed a hollow copper piston H, which moves freely in it, and floats upon the water. Another tube forms a communication between the bottom of this cylinder and the bottom of a close cylindrical vessel I, called the air-vessel. In this tube is a valve at K, opening upwards; also a pipe terminated in a funnel, and furnished with a valve L, which opens downwards. From the lower part of the air-vessel a tube proceeds, furnished also with a stopcock M, which is continued to whatever height the water is to be raised.

Water being poured into the funnel, passes through the valve L, which opens downwards; and filling the tube, ascends into the cylinder C, carrying the floating piston H on its surface, and maintains the same level in C which it has in the funnel. In this manner the cylinder C may be filled to the level of the top of the funnel. In this process the cock G should be left open, to allow the air in the cylinder to escape as the water rises.

Let us now suppose that, a fire being placed beneath the boiler, steam is being produced. On opening the cock D, and closing G, the steam, flowing through the syphon tube into the top of the cylinder, presses down the floating piston, and forces the water into the lower tube. The passage at L being stopped, since L opens downwards, the water forces open the valve K, and passes into the air-vessel I. When the piston H has been forced to the bottom of the cylinder, the cock D is closed, and G is opened, and the steam allowed to escape into the atmosphere. The cylinder is then replenished from the funnel as before; and the cock G being closed, and D opened, the process is repeated, and more water forced into the air-vessel I.

By continuing this process, water is forced into the air-vessel, and the air which originally filled that vessel is compressed into the space above the water; and its elastic force increases exactly in the same proportion as its bulk is diminished. (6.) Now, suppose that half of the vessel I has been filled by the water which is forced in, the air above the water being reduced to half its bulk has acquired twice the elastic force, and therefore presses on the surface of the water with twice the pressure of the atmosphere. Again, if two thirds of the air-vessel be filled with water, the air is compressed into one third of its bulk, and presses on the surface of the water with three times the pressure of the atmosphere, and so on.

Pl. III.
Drawn by the Author. Engr. by P. Maverick

Now if the cock M be opened, the pressure of the condensed air will force the water up in the tube N, and it will continue to rise until the column balances the pressure of the condensed air. If, when the water is suspended in the tube, and the cock M open, the vessel I is half filled, the height of the column in N will be 34 feet, because 34 feet of water has a pressure equal to the atmosphere; and this, added to the atmospheric pressure on it, gives a total pressure equal to twice that of the atmosphere, which balances the pressure of the air in I reduced to half its bulk. If two thirds of I be filled with water, a column of 68 feet will be supported in N; for such a column, united with the atmospheric pressure on it, gives a total pressure equal to three times that of the atmosphere, which balances the air in I compressed into one third of its original bulk.

By omitting the principle of condensation, this machine loses 26 feet in the perpendicular lift. But, indeed, in every point of view, it is inferior to the engines of Savery and Newcomen.

(45.) From the construction of the atmospheric engine by Newcomen, in 1705, for about half a century, no very important step had been made in the improvement of the steam engine. During this time the celebrated Smeaton had given much attention to the details of the atmospheric engine, and brought that machine to as high a state of perfection as its principle seemed to admit, and as it has ever since reached.

In the year 1763, James Watt, a name illustrious in the history of mechanical science, commenced his experiments on steam. He was born at Greenock, in the year 1736; and at the age of 16 was apprenticed to a mathematical instrument-maker, with whom he spent four years. At the age of 20 he removed to London, where he still pursued the same trade under a mathematical instrument-maker in that city. After a short time, however, finding his health declining, he returned to Scotland, and commenced business on his own account at Glasgow. In 1757 he was appointed mathematical instrument-maker to the university of Glasgow, where he resided and carried on business.

This circumstance produced an acquaintance between him and the celebrated Dr. Robison, then a student in Glasgow, who directed Watt's attention to the steam engine. In his first experiments he used steam of a high-pressure; but found it attended with so much danger of bursting the boiler, and difficulty of keeping the joints tight, and other objections, that he relinquished the inquiry at that time.

(46.) In the winter of 1763, Watt was employed to repair the model of an atmospheric engine, belonging to the natural philosophy class in the university—a circumstance which again turned his attention to the subject of the steam engine. He found the consumption of steam in working this model so great, that he inferred that the quantity wasted, must have had a very large proportion to that used in working the piston. His first conclusion was, that the material of the cylinder (brass) was too good a conductor of heat, and that much was thereby lost. He made some experiments, accordingly, with wooden cylinders, soaked in linseed oil, which, however, he soon laid aside. Further consideration convinced him that a prodigious waste of steam was essential to the very principle of the atmospheric engine. This will be easily understood.

When the steam has filled the cylinder so as to balance the atmospheric pressure on the piston, the cylinder must have the same temperature as the steam itself. Now, on introducing the condensing jet, the steam mixed with this water forms a mass of hot water in the bottom of the cylinder. This water, not being under the atmospheric pressure, boils at very low temperatures, and produces a vapour which resists the descent of the piston.

The heat of the cylinder itself assists this process; so that in order to produce a tolerably perfect vacuum, it was found necessary to introduce a quantity of condensing water, sufficient to reduce the temperature of the water in the cylinder lower than 100°, and consequently to cool the cylinder itself to that temperature. Under these circumstances, the descent of the piston was found to suffer very little resistance from any vapour within the cylinder: but then on the subsequent ascent, an immense waste of steam ensued; for the steam, on being admitted under the piston, was immediately condensed by the cold cylinder and water of condensation, and this continued until the cylinder became again heated up to 212°, to which point the whole cylinder should be heated before the ascent could be completed. Here, then, was an obvious and an extensive cause of the waste of heat. At every descent of the piston, the cylinder should be cooled below 100°; and at every ascent it should be again heated to 212°. It, therefore, became a question whether the force gained by the increased perfection of the vacuum was adequate to the waste of fuel in producing the vacuum; and it was found, on the whole, more profitable not to cool the cylinder to so low a temperature, and consequently to work with a very imperfect vacuum, and a diminished power.

Watt, therefore, found the engine involved in this dilemma: either much or little condensation-water must be used. If much were used, the vacuum would be perfect; but then the cylinder would be cooled, and would entail an extensive waste of fuel in heating it. If little were used, a vapour would remain, which would resist the descent of the piston, and rob the atmosphere of a part of its power. The great problem then pressed itself on his attention, to condense the steam without cooling the cylinder.

From the small quantity of water in the form of steam which filled the cylinder, and the large quantity of injected water to which this communicated heat, Watt was led to inquire what proportion the bulk of water in the liquid state bore to its bulk in the vaporous state; and also what proportion subsisted between the heat which it contained in these two states. He found by experiment that a cubic inch of water formed about a cubic foot of steam; and that the cubic foot of steam contained as much heat as would raise a cubic inch of water to about 1000°. (15.) This gave him some surprise, as the thermometer indicated the same temperature, 212°, for both the steam and the water from which it was raised. What then became of all the additional heat which was contained in the steam, and not indicated by the thermometer? Watt concluded that this heat must be in some way engaged in maintaining the water in its new form.

Struck with the singularity of this circumstance, he communicated it to Dr. Black, who then explained to Watt his doctrine of latent heat, which he had been teaching for a short time before that, but of which Watt had not previously heard; and thus, says Watt, "I stumbled upon one of the material facts on which that theory is founded."

(47.) Watt now gave his whole mind to the discovery of a method of "condensing the steam without cooling the cylinder." The idea occurred to him of providing a vessel separate from the cylinder, in which a constant vacuum might be sustained. If a communication could be opened between the cylinder and this vessel, the steam, by its expansive property, would rush from the cylinder to this vessel, where, being exposed to cold, it would be immediately condensed, the cylinder meanwhile being sustained at the temperature of 212°.

This happy conception formed the first step of that brilliant career which has immortalized the name of Watt, and which has spread his fame to the very skirts of civilization. He states, that the moment the notion of "separate condensation" struck him, all the other details of his improved engine followed in rapid and immediate succession, so that in the course of a day his invention was so complete that he proceeded to submit it to experiment.

His first notion was, as we have stated, to provide a separate vessel, called a condenser, having a pipe or tube communicating with the cylinder. This condenser he proposed to keep cold by being immersed in a cistern of cold water, and by providing a jet of cold water to play within it. When the communication with the cylinder is opened, the steam, rushing into the condenser, is immediately condensed by the jet and the cold surface. But here a difficulty presented itself, viz. how to dispose of the condensing water, and condensed steam, which would collect in the bottom of the condenser. But besides this, a quantity of air or permanent uncondensible gas would collect from various sources. Water in its ordinary state always holds more or less air in combination with it: the air thus combined with the water in the boiler passes through the tubes and cylinder with the steam, and would collect in the condenser. Air also would enter in combination with the condensing water, which would be set free by the heat it would receive from admixture with the steam. The air proceeding from these sources would, as Watt foresaw, accumulate in the condenser, even though the water might be withdrawn from it, and would at length resist the descent of the piston. To remedy this he proposed to form a communication between the bottom of the condenser and a pump which he called the AIR PUMP, so that the water and air which might be collected in the condenser would be drawn off; and it was easy to see how this pump could be worked by the machine itself. This constituted the second great step in the invention.

To make it air-tight in the cylinder, it had been found necessary to keep a quantity of water supplied above the piston. In the present case, any of this water which might escape through the piston, or between it and the cylinder, would boil, the cylinder being kept at 212°; and would thus, by the steam it would produce, vitiate the vacuum. To avoid this inconvenience, Watt proposed to lubricate the piston, and keep it air-tight, by employing melted wax and tallow.

Another inconvenience was still to be removed. On the descent of the piston, the air which must then enter the cylinder would lower its temperature; so that upon the next ascent, some of the steam which would enter it would be condensed, and hence would arise a source of waste. To remove this difficulty, Watt proposed to close the top of the cylinder altogether by an air-tight and steam-tight cover, allowing the piston-rod to play through a hole furnished with a stuffing-box, and to press down the piston by steam instead of the atmosphere.

This was the third step in this great invention, and one which totally changed the character of the machine. It now became really a steam engine in every sense; for the pressure above the piston was the elastic force of steam, and the vacuum below it was produced by the condensation of steam; so that steam was used both directly and indirectly as a moving power; whereas, in the atmospheric engine, the indirect force of steam only was used, being adopted merely as an easy method of producing a vacuum.

The last difficulty respecting the economy of heat which remained to be removed, was the circumstance of the cylinder being liable to be cooled on the external surface by the atmosphere. To obviate this, he first proposed casing the cylinder in wood, that being a substance which conducted heat slowly. He subsequently, however, adopted a different method, and inclosed one cylinder within another, leaving a space between them, which he kept constantly supplied with steam. Thus the inner cylinder was kept continually at the temperature of the steam which surrounded it. The outer cylinder was called the jacket.[15]

(48.) Watt computed that in the atmospheric engine three times as much heat was wasted in heating the cylinder, &c. as was spent in useful effect. And, as by the improvements proposed by him nearly all this waste was removed, he contemplated, and afterwards actually effected, a saving of three fourths of the fuel.

The honour due to Watt for his discoveries is enhanced by the difficulties under which he laboured from contracted circumstances at the time he made them. He relates, that when he was endeavouring to determine the heat consumed in the production of steam, his means did not permit him to use an efficient and proper apparatus, which would have been attended with expense; and it was by experiments made with apothecaries' phials, that he discovered the property already mentioned, which was one of the facts on which the doctrine of latent heat was founded.

A large share of the merit of Watt's discoveries has, by some writers, been attributed to Dr. Black, to whose instructions on the subject of latent heat it is said that Watt owed the knowledge of those facts which led to his improvements. Such, however, was not the case; and the mistake arose chiefly from some passages respecting Watt in the works of Dr. Robison, in one of which he states that Watt had been a pupil and intimate friend of Dr. Black; and that he attended two courses of his lectures at college in Glasgow. Such, however, was not the case; for "Unfortunately for me," says Watt in a letter to Dr. Brewster, "the necessary avocations of my business prevented me from attending his or any other lectures at college. In further noticing Dr. Black's opinion, that his fortunate observation of what happens in the formation and condensation of elastic vapour 'has contributed in no inconsiderable degree to the public good, by suggesting to my friend Mr. Watt of Birmingham, then of Glasgow, his improvements on the steam-engine,' it is very painful for me to controvert any opinion or assertion of my revered friend; yet, in the present case, I find it necessary to say, that he appears to me to have fallen into an error. These improvements proceeded upon the established fact, that steam was condensed by the contact of cold bodies, and the later known one, that water boiled at heats below 100°, and consequently that a vacuum could not be obtained unless the cylinder and its contents were cooled every stroke below the heat."

Share on Twitter Share on Facebook