CHAPTER V. WATT'S SINGLE-ACTING STEAM ENGINE.

Expansive Principle applied. — Failure of Roebuck, and Partnership with Bolton. — Patent extended to 1800. — Counter. — Difficulties in getting the Engines into use.

(49.) The first machine in which Watt realised the conceptions which we mentioned in the last chapter, is that which was afterwards called his Single-acting Steam Engine. We shall now describe the working apparatus in this machine.

The cylinder is represented at C (fig. 12.)—in which the piston P moves steam-tight. It is closed at the top, and the piston-rod being very accurately turned, runs in a steam-tight collar B furnished with a stuffing-box, and constantly supplied with melted tallow or wax. Through a funnel in the top of the cylinder, melted grease flows upon the piston so as to maintain it steam-tight. Two boxes A A, containing the valves for admitting and withdrawing the steam, connected by a tube of communication T, are attached to the cylinder; the action of these valves will be presently described. Below the cylinder, placed in a cistern of cold water, is a close cylindrical vessel D, called the condenser, communicating with the cylinder by a tube T´, leading to the lower valve-box A. In the side of this condenser is inserted a tube, the inner end of which is pierced with holes like the rose of a watering-pot; and a cock E in the cold cistern is placed on the outside, through which, when open, the water passing, rises in a jet on the inside.

The tube S, which conducts steam from the boiler, enters the top of the upper valve-box at F. Immediately under it is placed a valve G, which is opened and closed by a lever or rod G´. This valve, when open, admits steam to the top of the piston, and also to the tube T, which communicates between the two valve-boxes, and when closed suspends the admission of steam. There are two valves in the lower box, one H in the top worked by the lever H´, and one I in the bottom worked by the lever I´. The valve H, when open, admits steam to pass from the cylinder above the piston, by the tube T, to the cylinder below the piston, the valve I being supposed in this case to be closed. This valve I, when open, (the valve H being closed,) admits steam to pass from below the cylinder through T´ to the condenser. This steam, entering the condenser, meets the jet, admitted to play by the valve E, and is condensed.

The valve G is called the upper steam valve; H, lower steam valve; I, the exhausting-valve; and E, the condensing valve. Let us now consider how these valves must be worked in order to produce the alternate ascent and descent of the piston.

It is in the first place necessary that all the air which fills the cylinder, tubes, and condenser should be expelled. To accomplish this it is only necessary to open at once the valves G, H, and I. The steam then rushing from F through the valve G will pass into the upper part of the cylinder, and through the tube T and the valve H into the lower part, and also through the valve I into the condenser. After the steam ceases to be condensed by the cold of the apparatus, it will rush out mixed with air through the valve M, which opens outward; and this will continue until all the air has been expelled, and the apparatus filled with pure steam. Then suppose all the valves again closed. The cylinder both above and below the piston is filled with steam; and the steam which filled the condenser being cooled by the cold surface, a vacuum has been produced in that vessel.

The apparatus being in this state, let the upper steam valve G, the exhausting-valve I, and the condensing valve E be opened. Steam will thus be admitted through G to press on the top of the piston; and this steam will be prevented from circulating to the lower part of the cylinder by the lower steam-valve H being closed. Also the steam which filled the cylinder below the piston rushes through the open exhausting-valve I to the condenser, where it meets the jet allowed to play by the open condensing valve E. It is thus instantly condensed, and a vacuum is left in the cylinder below the piston. Into this vacuum the piston is pressed without resistance by the steam which is admitted through G. When the piston has thus been forced to the bottom of the cylinder, let the three valves G, I, and E, which were before opened, be closed, and let the lower steam-valve H be opened. The effects of this change are easily perceived. By closing the upper steam-valve G, the further admission of steam to the apparatus is stopped. By closing the exhausting-valve I, all transmission of steam from the cylinder to the condenser is stopped. Thus the steam which is in the cylinder, valve-boxes, and tubes is shut up in them, and no more admitted, nor any allowed to escape. By closing the condensing valve E, the play of the jet in the condenser is suspended.

Previously to opening the valve H, the steam contained in the apparatus was confined to the part of the cylinder above the piston and the tube T and the valve-box A. But on opening this valve, the steam is allowed to circulate above and below the piston; and in fact through every part included between the upper steam valve G, and the exhausting-valve I. The same steam circulating on both sides, the piston is thus equally pressed upward and downward.

In this case there is no force tending to retain the piston at the bottom of the cylinder except its own weight. Its ascent is produced in the same manner as the ascent of the piston in the atmospheric engine. The piston-rod is connected by chains G to the arch-head of the beam, and the weight of the pump-rod R, or any other counterpoise acting on the chains suspended from the other arch-head, draws the piston to the top of the cylinder.

When the piston has arrived at the top of the cylinder, suppose the three valves G, I, and E to be again opened, and H closed. Steam passes from the steam-pipe F through the upper steam-valve G to the top of the piston, and at the same time the steam which filled the cylinder below the piston is drawn off through the open exhausting-valve I into the condenser, where it is condensed by the jet allowed to play by the open condensing valve E. The pressure of the steam above the piston then forces it without resistance into the vacuum below it, and so the process is continued.

It should be remembered, that of the four valves necessary to work the piston, three are to be opened the moment the piston reaches the top of the cylinder, and the fourth is to be closed; and on the piston arriving at the bottom of the cylinder, these three are to be closed and the fourth opened. The three valves which are thus opened and closed together are the upper steam-valve, the exhausting-valve, and the condensing valve. The lower steam-valve is to be opened at the same instant that these are closed, and vice versâ. The manner of working these valves we shall describe hereafter.

The process which has just been described, if continued for any considerable number of reciprocations of the piston, would be attended with two very obvious effects which would obstruct and finally destroy the action of the machine. First, the condensing water and condensed steam would collect in the condenser D, and fill it; and secondly, the water in the cistern in which the condenser is placed would gradually become heated, until at last it would not be cold enough to condense the steam when introduced in the jet. Besides this, it will be recollected that water boils in a vacuum at a very low temperature (17); and, therefore, the hot water collected in the bottom of the condenser would produce steam which, rising into the cylinder through the exhausting-valve, would resist the descent of the piston, and counteract the effects of the steam above it. A further disadvantage arises from the air or other permanently elastic fluid which enters in combination with the water, both in the boiler and condensing jet, and which is disengaged by its own elasticity.

To remove these difficulties, a pump is placed near the condenser communicating with it by a valve M, which opens from the condenser into the pump. In this pump is placed a piston which moves air-tight, and in which there is a valve N, which opens upwards. Now suppose the piston at the bottom of the pump. As it rises, since the valve in it opens upwards, no air can pass down through it, and consequently it leaves a vacuum below it. The water and any air which may be collected in the condenser open the valve M, and pass into the lower part of the pump from which they cannot return in consequence of the valve M opening outwards. On the descent of the pump-piston, the fluids which occupy the lower part of the pump, force open the piston-valve N; and passing through it, get above the piston, from which their return is prevented by the valve N. In the next ascent, the piston lifts these fluids to the top of the pump, whence they are discharged through a conduit into a small cistern B by a valve K which opens outwards. The water which is thus collected in B is heated by the condensed steam, and is reserved in B, which is called the hot well for feeding the boiler, which is effected by means which we shall presently explain. The pump which draws off the hot water and air from the condenser is called the air-pump.

(50.) We have not yet explained the manner in which the valves and the air-pump piston are worked. The rod Q of the latter is connected with the working beam, and the pump is therefore wrought by the engine itself. It is not very material to which arm of the beam it is attached. If it be on the same side of the centre of the beam with the cylinder, it rises and falls with the steam-piston; but if it be on the opposite side, the pump-piston rises when the steam-piston falls, and vice versâ. In the single-engine there are some advantages in the latter arrangement. As the steam-piston descends, the steam rushes into the condenser, and the jet is playing; and this, therefore, is the most favourable time for drawing out the water and condensed steam from the condenser by the ascent of the pump-piston, since by this means the descent of the steam-piston is assisted; an effect which would not be produced if the steam-piston and pump-piston descended together.

With respect to the method of opening and closing the valves, it is evident that the three valves which are simultaneously opened and closed may be so connected as to be worked by the same lever. This lever may be struck by a pin fixed upon the rod Q of the air-pump, so that when the pistons have arrived at the top of the cylinders the pin strikes the lever and opens the three valves. A catch or detent is provided for keeping them open during the descent of the piston, from which they are disengaged in a similar manner on the arrival of the piston at the bottom of the cylinder, and they close by their own weight.

In exactly the same way the lower steam-valve is opened on the arrival of the piston at the bottom of the cylinder, and closed on its arrival at the top by the action of a pin placed on the piston-rod of the air-pump.

(51.) Soon after the invention of these engines, Watt found that in some instances inconvenience arose from the too rapid motion of the steam-piston at the end of its stroke, owing to its being moved with an accelerated motion. This was owing to the uniform action of the steam-pressure upon it: for upon first putting it in motion at the top of the cylinder, the motion was comparatively slow; but from the continuance of the same pressure the velocity with which the piston descended was continually increasing, until it reached the bottom of the cylinder, where it acquired its greatest velocity. To prevent this, and to render the descent as nearly as possible uniform, it was proposed to cut off the steam before the descent was completed, so that the remainder might be effected merely by the expansion of the steam which was admitted to the cylinder. To accomplish this, he contrived, by means of a pin on the rod of the air-pump, to close the upper steam-valve when the steam-piston had completed one-third of its entire descent, and to keep it closed during the remainder of the descent, and until the piston again reached the top of the cylinder. By this arrangement the steam pressed the piston with its full force through one-third of the descent, and thus put it into motion; during the other two thirds the steam thus admitted acted merely by its expansive force, which became less in exactly the same proportion as the space given to it by the descent of the piston increased. Thus, during the last two thirds of the descent the piston is urged by a gradually decreasing force, which in practice was found just sufficient to sustain in the piston a uniform velocity.

(52.) We have already mentioned the difficulty arising from the water in the cistern, in which the condenser and air-pump are placed, becoming heated, and the condensation therefore being imperfect. To prevent this, a waste-pipe is placed in this cistern, from which the water is continually discharged, and a pump L (called the cold-water-pump) is worked by the engine itself, which raises a supply of cold water and sends it through a pipe in a constant stream into the cold cistern. The waste-pipe, through which the water flows from the cistern, is placed near the top of it, since the heated water, being lighter than the cold, remains on the top. Thus the heated water is continually flowing off, and a constant stream of cold water supplied. The piston-rod of the cold-water-pump is attached to the beam (by which it is worked), usually on the opposite side from the cylinder.

Another pump O (called the hot-water-pump) enters the hot well B; and raising the water from it, forces it through a tube to the boiler for the purpose of feeding it. The manner in which this is effected will be more particularly described hereafter. A part of the heat which would otherwise be lost, is thus restored to the boiler to assist in the production of fresh steam. We may consider a portion of the heat to be in this manner circulating continually through the machine. It proceeds from the boiler in steam, works the piston, passes into the condenser, and is reconverted into hot water; thence it is passed to the hot well, from whence it is pumped back into the boiler, and is again converted into steam, and so proceeds in constant circulation.

From what has been described, it appears that there are four pistons attached to the great beam and worked by the piston of the steam-cylinder. On the same side of the centre with the cylinder is the piston-rod of the air-pump, and on the opposite side are the piston-rods of the hot-water pump and the cold-water-pump; and lastly, at the extremity of the beam opposite to that at which the steam-piston works, is the piston of the pump to be wrought by the engine.

(53.) The position of these piston-rods with respect to the centre of the beam depends on the play necessary to be given to the piston. If the play of the piston be short, its rod will be attached to the beam near the centre; and if longer, more remote from the centre. The cylinder of the air-pump is commonly half the length of the steam-cylinder, and its piston-rod is attached to the beam at the point exactly in the middle between the end of the beam and the centre. The hot-water pump not being required to raise a considerable quantity of water, its piston requires but little play, and is therefore placed near the centre of the beam, the piston-rod of the cold-water pump being farther from the centre.

(54.) It appears to have been about the year 1763, that Watt made these improvements in the steam engine, and constructed a model which fully realized his expectations. Either from want of influence or the fear of prejudice and opposition, he did not make known his discovery or attempt to secure it by a patent at that time. Having adopted the profession of a land surveyor, his business brought him into communication with Dr. Roebuck, at that time extensively engaged in mining speculations, who possessed some command of capital, and was of a very enterprising disposition. By Roebuck's assistance and countenance, Watt erected an engine of the new construction at a coal mine on the estate of the Duke of Hamilton, at Kinneil near Burrowstoness. This engine being a kind of experimental one, was improved from time to time as circumstances suggested, until it reached considerable perfection. While it was being erected, Watt in conjunction with Roebuck applied for and obtained a patent to secure the property in the invention. This patent was enrolled in 1769, six years after Watt invented the improved engine.

Watt was now preparing to manufacture the new engines on an extensive scale, when his partner Roebuck suffered a considerable loss by the failure of a mining speculation in which he had engaged, and became involved in embarrassments, so as to be unable to make the pecuniary advances necessary to carry Watt's designs into execution. Again disappointed, and harassed by the difficulties which he had to encounter, Watt was about to relinquish the further prosecution of his plans, when Mr. Matthew Bolton, a gentleman who had established a factory at Birmingham a short time before, made proposals to purchase Dr. Roebuck's share in the patent, in which he succeeded; and in 1773, Watt entered into partnership with Bolton.

His situation was now completely changed. Bolton was not only a man of extensive capital, but also of considerable personal influence, and had a disposition which led him, from taste, to undertakings which were great and difficult, and which he prosecuted with the most unremitting ardency and spirit. "Mr. Watt," says Playfair, "was studious and reserved, keeping aloof from the world; while Mr. Bolton was a man of address, delighting in society, active, and mixing with people of all ranks with great freedom, and without ceremony. Had Mr. Watt searched all Europe, he probably would not have found another person so fitted to bring his invention before the public, in a manner worthy of its merit and importance; and although of most opposite habits, it fortunately so happened that no two men ever more cordially agreed in their intercourse with each other."

The delay in the progress of the manufacture of engines occasioned by the failure of Dr. Roebuck was such, that Watt found that the duration of his patent would probably expire before he would even be reimbursed the necessary expenses attending the various arrangements for the manufacture of the engines. He therefore, with the advice and influence of Bolton, Roebuck, and other friends, in 1775, applied to parliament for an extension of the terms of his patent, which was granted for 25 years from the date of his application, so that his exclusive privilege should expire in 1800.

An engine was now erected at Soho (the name of Bolton's factory) as a specimen for the examination of mining speculators, and the engines were beginning to come into demand. The manner in which Watt chose to receive remuneration from those who used his engines was as remarkable for its ingenuity as for its fairness and liberality. He required that one-third of the saving of coals effected by his engines, compared with the atmospheric engines hitherto used, should be paid to him, leaving the benefit of the other two-thirds to the public. Accurate experiments were made to ascertain the saving of coals; and as the amount of this saving in each engine depended on the length of time it was worked, or rather on the number of descents of the piston, Watt invented a very ingenious method of determining this. The vibrations of the great working beam were made to communicate with a train of wheelwork, in the same way as those of a pendulum communicate with the work of a clock. Each vibration of the beam moved one tooth of a small wheel, and the motion was communicated to a hand or index, which moved on a kind of graduated plate like the dial plate of a clock. The position of this hand marked the number of vibrations of the beam. This apparatus, which was called the counter, was locked up and secured by two different keys, one of which was kept by the proprietor, and the other by Bolton and Watt, whose agents went round periodically to examine the engines, when the counters were opened by both parties and examined, and the number of vibrations of the beam determined, and the value of the patent third found.[16]

Notwithstanding the manifest superiority of these engines over the old atmospheric engines; yet such were the influence of prejudice and the dislike of what is new, that Watt found great difficulties in getting them into general use. The comparative first cost also probably operated against them; for it was necessary that all the parts should be executed with great accuracy, which entailed proportionally increased expense. In many instances they felt themselves obliged to induce the proprietors of the old atmospheric engines to replace them by the new ones, by allowing them in exchange an exorbitant price for the old engines; and in some cases they were induced to erect engines at their own expense, upon an agreement that they should only be paid if the engines were found to fulfil the expectations, and brought the advantages which they promised. It appeared since, that Bolton and Watt had actually expended a sum of nearly 50,000l. on these engines before they began to receive any return. When we contemplate the immense advantages which the commercial interests of the country have gained by the improvements in the steam engine, we cannot but look back with disgust at the influence of that fatal prejudice which opposes the progress of improvement under the pretence of resisting innovation. It would be a problem of curious calculation to determine what would have been lost to the resources of this country, if chance had not united the genius of such a man as Watt with the spirit, enterprise, and capital, of such a man as Bolton! The result would reflect little credit on those who think novelty alone a sufficient reason for opposition.

Share on Twitter Share on Facebook