Now some or all the marks above enumerated,—the moraines, erratics, polished surfaces, domes, striae, and perched rocks—are observed in the Alps at great heights above the present glaciers and far below their actual extremities; also in the great valley of Switzerland, 50 miles broad; and almost everywhere on the Jura, a chain which lies to the north of this valley. The average height of the Jura is about one-third that of the Alps, and it is now entirely destitute of glaciers; yet it presents almost everywhere moraines, and polished and grooved surfaces of rocks. The erratics, moreover, which cover it present a phenomenon which has astonished and perplexed the geologist for more than half a century. No conclusion can be more incontestable than that these angular blocks of granite, gneiss, and other crystalline formations, came from the Alps, and that they have been brought for a distance of 50 miles and upwards across one of the widest and deepest valleys of the world; so that they are now lodged on the hills and valleys of a chain composed of limestone and other formations, altogether distinct from those of the Alps. Their great size and angularity, after a journey of so many leagues, has justly excited wonder, for hundreds of them are as large as cottages; and one in particular, composed of gneiss, celebrated under the name of Pierre a Bot, rests on the side of a hill about 900 feet above the lake of Neufchatel, and is no less than 40 feet in diameter. But there are some far-transported masses of granite and gneiss which are still larger, and which have been found to contain 50,000 and 60,000 cubic feet of stone; and one limestone block at Devens, near Bex, which has travelled 30 miles, contains 161,000 cubic feet, its angles being sharp and unworn.
Von Buch, Escher, and Studer inferred, from an examination of the mineral composition of the boulders, that those resting on the Jura, opposite the lakes of Geneva and Neufchatel, have come from the region of Mont Blanc and the Valais, as if they had followed the course of the Rhone to the lake of Geneva, and had then pursued their way uninterruptedly in a northerly direction.
M. Charpentier, who conceived the Alps in the period of greatest cold to have been higher by several thousand feet than they are now, had already suggested that the Alpine glaciers once reached continuously to the Jura, conveying thither the large erratics in question.*
(* D'Archiac, "Histoire des Progres" etc. volume 2 page
249.)
M. Agassiz, on the other hand, instead of introducing distinct and separate glaciers, imagined that the whole valley of Switzerland might have been filled with ice, and that one great sheet of it extended from the Alps to the Jura, the two chains being of the same height as now relatively to each other. To this idea it was objected that the difference of altitude, when distributed over a space of 50 miles, would give an inclination of two degrees only, or far less than that of any known glacier. In spite of this difficulty, the hypothesis has since received the support of Professor James Forbes in his very able work on the Alps published in 1843.
In 1841, I advanced jointly with Mr. Darwin* the theory that the erratics may have been transferred by floating ice to the Jura, at the time when the greater part of that chain and the whole of the Swiss valley to the south was under the sea.
(* See "Elements of Geology" 2nd edition 1841.)
We pointed out that if at that period the Alps had attained only half their present altitude they would yet have constituted a chain as lofty as the Chilean Andes, which in a latitude corresponding to Switzerland now send down glaciers to the head of every sound, from which icebergs covered with blocks of granite are floated seaward. Opposite that part of Chile where the glaciers abound is situated the island of Chiloe 100 miles in length with a breadth of 30 miles, running parallel to the continent. The channel which separates it from the main land is of considerable depth and 25 miles broad. Parts of its surface, like the adjacent coast of Chile, are overspread with Recent marine shells, showing an upheaval of the land during a very modern period; and beneath these shells is a boulder deposit in which Mr. Darwin found large blocks of granite and syenite which had evidently come from the Andes.
A continuance in future of the elevatory movement now observed to be going on in this region of the Andes and of Chiloe might cause the former chain to rival the Alps in altitude and give to Chiloe a height equal to that of the Jura. The same rise might dry up the channel between Chiloe and the main land so that it would then represent the great valley of Switzerland.
Sir Roderick I. Murchison, after making several important geological surveys of the Alps, proposed in 1849 a theory agreeing essentially with that suggested by Mr. Darwin and myself, namely that the erratics were transported to the Jura at a time when the great strath of Switzerland and many valleys receding far into the Alps were under water. He thought it impossible that the glacial detritus of the Rhone could ever have been carried to the Lake of Geneva and beyond it by a glacier, or that so vast a body of ice issuing from one narrow valley could have spread its erratics over the low country of the cantons of Vaud, Fribourg, Berne, and Soleure, as well as the slopes of the Jura, comprising a region of about 100 miles in breadth from south-west to north-east, as laid down in the map of Charpentier. He therefore imagined the granitic blocks to have been translated to the Jura by ice-floats when the intermediate country was submerged.*
(* "Quarterly Journal of the Geological Society" volume 6
1850 page 65.)
It may be remarked that this theory, provided the water be assumed to have been salt or brackish, demands quite as great an oscillation in the level of the land as that on which Charpentier had speculated, the only difference being that the one hypothesis requires us to begin with a subsidence of 2500 or 3000 feet, and the other with an elevation to the same amount. We should also remember that the crests or watersheds of the Alps and Jura are about 80 miles apart, and if once we suppose them to have been in movement during the glacial period it is very probable that the movements at such a distance may not have been strictly uniform. If so the Alps may have been relatively somewhat higher, which would have greatly facilitated the extension of Alpine glaciers to the flanks of the less elevated chain.
Five years before the publication of the memoir last mentioned, M. Guyot had brought forward a great body of new facts in support of the original doctrine of Charpentier, that the Alpine glaciers once reached as far as the Jura and that they had deposited thereon a portion of their moraines.*
(* "Bulletin de la Societe des Sciences Naturelles de
Neufchatel" 1845.)
The scope of his observations and argument was laid with great clearness before the British public in 1852 by Mr. Charles Maclaren, who had himself visited Switzerland for the sake of forming an independent opinion on a theoretical question of so much interest and on which so many eminent men of science had come to such opposite conclusions.*
(* "Edinburgh New Philosophical Magazine" October 1852.)
M. Guyot had endeavoured to show that the Alpine erratics, instead of being scattered at random over the Jura and the great plain of Switzerland, are arranged in a certain determinate order strictly analogous to that which ought to prevail if they had once constituted the lateral, medial, and terminal moraines of great glaciers. The rocks chiefly relied on as evidence of this distribution consist of three varieties of granite, besides gneiss, chlorite-slate, euphotide, serpentine, and a peculiar kind of conglomerate, all of them foreign alike to the great Strath between the Alps and Jura and to the structure of the Jura itself. In these two regions limestones, sandstones, and clays of the Secondary and Tertiary formations alone crop out at the surface, so that the travelled fragments of Alpine origin can easily be distinguished and in some cases the precise localities pointed out from whence they must have come.
Figure 42. Map of Ancient Glacier
(FIGURE 42. MAP SHOWING THE SUPPOSED COURSE OF THE ANCIENT AND NOW
EXTINCT GLACIER OF THE RHONE, AND THE DISTRIBUTION OF THE ERRATIC
BLOCKS AND DRIFT CONVEYED BY IT TO THE GREAT VALLEY OF SWITZERLAND
AND THE JURA.)
The accompanying map or diagram (Figure 42) slightly altered from one given by Mr. Maclaren will enable the reader more fully to appreciate the line of argument relied on by M. Guyot. The dotted area is that over which the Alpine fragments were spread by the supposed extinct glacier of the Rhone. The site of the present reduced glacier of that name is shown at A. From that point the boulders may first be traced to B, or Martigny, where the valley takes an abrupt turn at right angles to its former course. Here the blocks belonging to the right side of the river or derived from c d e have not crossed over to the left side at B, as they should have done had they been transported by floating ice, but continue to keep to the side to which they belonged, assuming that they once formed part of a right lateral moraine of a great extinct glacier. That glacier, after arriving at the lower end of the long narrow valley of the upper Rhone at F, filled the Lake of Geneva, F, I, with ice. From F, as from a great vomitory, it then radiated in all directions bearing along with it the moraines with which it was loaded and spreading them out on all sides over the great plain. But the principal icy mass moved straight onwards in a direct line towards the hill of Chasseron, G (precisely opposite F), where the Alpine erratics attain their maximum of height on the Jura, that is to say 2015 English feet above the level of the Lake of Neufchatel or 3450 feet above the sea. The granite blocks which have ascended to this eminence G came from the east shoulder of Mont Blanc h, having travelled in the direction B, F, G.
When these and the accompanying blocks resting on the south-eastern declivity of the Jura are traced from their culminating point G in opposite directions, whether westward towards Geneva or eastwards towards Soleure, they are found to decline in height from the middle of the arc G towards the two extremities I and K, both of which are at a lower level than G, by about 1500 feet. In other words the ice of the extinct glacier, having mounted up on the sloping flanks of the Jura in the line of greatest pressure to its highest elevation, began to decline laterally in the manner of a pliant or viscous mass with a gentle inclination till it reached two points distant from each other no less than 100 miles. [Note 33]
In further confirmation of this theory M. Guyot observed that fragments derived from the right bank of the great valley of the Rhone c d e are found on the right side of the great Swiss basin or Strath as at l and m, while those derived from the left bank p h occur on the left side of the basin or on the Jura between G and I; and those again derived from places farthest up on the left bank and nearest the source of the Rhone, as n o, occupy the middle of the great basin, constituting between m and K what M. Guyot calls the frontal or terminal moraine of the eastern prolongation of the old glacier.
A huge boulder of talcose granite, now at Steinhoff, 10 miles east from K, or Soleure, containing 61,000 French cubic feet, or equal in bulk to a mass measuring 40 feet in every direction, was ascertained by Charpentier from its composition to have been derived from n, one of the highest points on the left side of the Rhone valley far above Martigny. From this spot it must have gone all round by F, which is the only outlet to the deep valley, so as to have performed a journey of no less than 150 miles!