EXTINCT GLACIERS OF SWITZERLAND.

We have seen in the preceding chapters that the mountains of Scandinavia, Scotland, and North Wales have served, during the glacial period, as so many independent centres for the dispersion of erratic blocks, just as at present the ice-covered continent of North Greenland is sending down ice in all directions to the coast, and filling Baffin's Bay with floating bergs, many of them laden with fragments of rocks.

Another great European centre of ice-action during the Pleistocene period was the Alps of Switzerland, and I shall now proceed to consider the chronological relations of the extinct Alpine glaciers to those of more northern countries previously treated of. [Note 32]

The Alps lie far south of the limits of the northern drift described in the foregoing pages, being situated between the 44th and 47th degrees of north latitude. On the flanks of these mountains, and on the sub-Alpine ranges of hills or plains adjoining them, those appearances which have been so often alluded to, as distinguishing or accompanying the drift, between the 50th and 70th parallels of north latitude, suddenly reappear and assume, in a southern region, a truly arctic development. Where the Alps are highest, the largest erratic blocks have been sent forth; as, for example, from the regions of Mont Blanc and Monte Rosa, into the adjoining parts of Switzerland and Italy; while in districts where the great chain sinks in altitude, as in Carinthia, Carniola, and elsewhere, no such rocky fragments, or a few only and of smaller bulk, have been detached and transported to a distance.

In the year 1821, M. Venetz first announced his opinion that the Alpine glaciers must formerly have extended far beyond their present limits, and the proofs appealed to by him in confirmation of this doctrine were afterwards acknowledged by M. Charpentier, who strengthened them by new observations and arguments, and declared in 1836 his conviction that the glaciers of the Alps must once have reached as far as the Jura, and have carried thither their moraines across the great valley of Switzerland. M. Agassiz, after several excursions in the Alps with M. Charpentier, and after devoting himself some years to the study of glaciers, published in 1840 an admirable description of them and of the marks which attest the former action of great masses of ice over the entire surface of the Alps and the surrounding country.*

     (* Agassiz, "Etudes sur les Glaciers et Systeme Glaciaire.")

He pointed out that the surface of every large glacier is strewed over with gravel and stones detached from the surrounding precipices by frost, rain, lightning, or avalanches. And he described more carefully than preceding writers the long lines of these stones, which settle on the sides of the glacier, and are called the lateral moraines; those found at the lower end of the ice being called terminal moraines. Such heaps of earth and boulders every glacier pushes before it when advancing, and leaves behind it when retreating. When the Alpine glacier reaches a lower and a warmer situation, about 3000 or 4000 feet above the sea, it melts so rapidly that, in spite of the downward movement of the mass, it can advance no farther. Its precise limits are variable from year to year, and still more so from century to century; one example being on record of a recession of half a mile in a single year. We also learn from M. Venetz, that whereas, between the eleventh and fifteenth centuries, all the Alpine glaciers were less advanced than now, they began in the seventeenth and eighteenth centuries to push forward, so as to cover roads formerly open, and to overwhelm forests of ancient growth.

These oscillations enable the geologist to note the marks which a glacier leaves behind it as it retrogrades; and among these the most prominent, as before stated, are the terminal moraines, or mounds of unstratified earth and stones, often divided by subsequent floods into hillocks, which cross the valley like ancient earthworks, or embankments made to dam up a river. Some of these transverse barriers were formerly pointed out by Saussure below the glacier of the Rhone, as proving how far it had once transgressed its present boundaries. On these moraines we see many large angular fragments, which, having been carried along the surface of the ice, have not had their edges worn off by friction; but the greater number of the boulders, even those of large size, have been well rounded, not by the power of water, but by the mechanical force of the ice, which has pushed them against each other, or against the rocks flanking the valley. Others have fallen down the numerous fissures which intersect the glacier, where, being subject to the pressure of the whole mass of ice, they have been forced along, and either well rounded or ground down into sand, or even the finest mud, of which the moraine is largely constituted.

As the terminal moraines are the most prominent of all the monuments left by a receding glacier, so are they the most liable to obliteration; for violent floods or debacles are sometimes occasioned in the Alps by the sudden bursting of glacier-lakes, or those temporary sheets of water before alluded to which are caused by the damming up of a river by a glacier which has increased during a succession of cold seasons, and descending from a tributary into the main valley, has crossed it from side to side. On the failure of this icy barrier the accumulated waters, being let loose, sweep away and level many a transverse mound of gravel and loose boulders below, and spread their materials in confused and irregular beds over the river-plain.

Another mark of the former action of glaciers in situations where they exist no longer, is the polished, striated, and grooved surfaces of rocks before described. Stones which lie underneath the glacier and are pushed along by it sometimes adhere to the ice, and as the mass glides slowly along at the rate of a few inches, or at the utmost 2 or 3 feet per day, abrade, groove, and polish the rock, and the larger blocks are reciprocally grooved and polished by the rock on their lower sides. As the forces both of pressure and propulsion are enormous, the sand acting like emery polishes the surface; the pebbles, like coarse gravers, scratch and furrow it; and the large stones scoop out grooves in it. Lastly, projecting eminences of rock, called "roches moutonnees," are smoothed and worn into the shape of flattened domes where the glaciers have passed over them.

Although the surface of almost every kind of rock when exposed to the open air wastes away by decomposition, yet some retain for ages their polished and furrowed exterior: and if they are well protected by a covering of clay or turf, these marks of abrasion seem capable of enduring for ever. They have been traced in the Alps to great heights above the present glaciers, and to great horizontal distances beyond them.

Another effect of a glacier is to lodge a ring of stones round the summit of a conical peak which may happen to project through the ice. If the glacier is lowered greatly by melting, these circles of large angular fragments, which are called "perched blocks," are left in a singular situation near the top of a steep hill or pinnacle, the lower parts of which may be destitute of boulders.

Share on Twitter Share on Facebook