VI – LA THÉORIE DES ERREURS

Nous sommes ainsi amenés à parler de la théorie des erreurs, qui se rattache directement au problème de la probabilité des causes. Ici encore nous constatons des effets, à savoir un certain nombre d’observations discordantes, et nous cherchons à deviner les causes, qui sont d’une part la véritable valeur de la quantité à mesurer, d’autre part l’erreur commise dans chaque observation isolée. Il faudrait calculer quelle est a posteriori la grandeur probable de chaque erreur, et, par conséquent, la valeur probable de la quantité à mesurer.

Mais, ainsi que je viens de l’expliquer, on ne saurait entreprendre ce calcul, si l’on n’admettait a priori, c’est-à-dire avant toute observation, une loi de probabilité des erreurs. Y a-t-il une loi des erreurs ?

La loi des erreurs admise par tous les calculateurs est la loi de Gauss, qui est représentée par une certaine courbe transcendante connue sous le nom de « courbe en cloche ».

Mais d’abord il convient de rappeler la distinction classique entre les erreurs systématiques et accidentelles. Si nous mesurons une longueur avec un mètre trop long, nous trouverons toujours un nombre trop faible et il ne servira à rien de recommencer la mesure plusieurs fois ; c’est là une erreur systématique. Si nous la mesurons avec un mètre exact, nous pourrons nous tromper cependant, mais nous nous tromperons tantôt en plus, tantôt en moins, et, quand nous ferons la moyenne d’un grand nombre de mesures, l’erreur tendra à s’atténuer. Ce sont là des erreurs accidentelles.

Il est évident d’abord que les erreurs systématiques ne peuvent satisfaire à la loi de Gauss ; mais les erreurs accidentelles y satisfont-elles ? On a tenté un grand nombre de démonstrations ; presque toutes sont de grossiers paralogismes. On peut néanmoins démontrer la loi de Gauss en partant des hypothèses suivantes : l’erreur commise est la résultante d’un très grand nombre d’erreurs partielles et indépendantes ; chacune des erreurs partielles est très petite et obéit d’ailleurs à une loi de probabilité quelconque, sauf que la probabilité d’une erreur positive est la même que celle d’une erreur égale et de signe contraire. Il est évident que ces conditions seront remplies souvent, mais pas toujours, et nous pourrons réserver le nom d’accidentelles aux erreurs qui y satisfont.

On voit que la méthode des moindres carrés n’est pas légitime dans tous les cas ; en général, les physiciens s’en défient plus que les astronomes. Cela tient sans doute à ce que ces derniers, outre les erreurs systématiques qu’ils rencontrent comme les physiciens, ont à lutter avec une cause d’erreur extrêmement importante et qui est tout à fait accidentelle ; je veux parler des ondulations atmosphériques. Aussi il est très curieux d’entendre un physicien discuter avec un astronome au sujet d’une méthode d’observation : le physicien, persuadé qu’une bonne mesure vaut mieux que beaucoup de mauvaises, se préoccupe avant tout d’éliminer à force de précautions les dernières erreurs systématiques et l’astronome lui répond : « Mais vous ne pourrez observer ainsi qu’un petit nombre d’étoiles ; les erreurs accidentelles ne disparaîtront pas ».

Que devons-nous conclure ? Faut-il continuer à appliquer la méthode des moindres carrés ? Nous devons distinguer : nous avons éliminé toutes les erreurs systématiques que nous avons pu soupçonner ; nous savons bien qu’il y en a encore, mais nous ne pouvons les découvrir ; cependant, il faut prendre un parti et adopter une valeur définitive, qui sera regardée comme la valeur probable ; pour cela, il est évident que ce que nous avons de mieux à faire, c’est d’appliquer la méthode de Gauss. Nous n’avons fait qu’appliquer une règle pratique se rapportant à la probabilité subjective. Il n’y a rien à dire.

Mais l’on veut aller plus loin et affirmer que non seulement la valeur probable est de tant, mais que l’erreur probable commise sur le résultat est de tant. Cela est absolument illégitime ; cela ne serait vrai que si nous étions sûrs que toutes les erreurs systématiques sont éliminées, et nous n’en savons absolument rien. Nous avons deux séries d’observations ; en appliquant la règle des moindres carrés, nous trouvons que l’erreur probable sur la première série est deux fois plus faible que sur la seconde. La seconde série peut cependant être meilleure que la première parce que la première est peut-être affectée d’une grosse erreur systématique. Tout ce que nous pouvons dire, c’est que la première série est probablement meilleure que la seconde, puisque son erreur accidentelle est plus faible, et que nous n’avons aucune raison d’affirmer que l’erreur systématique est plus grande pour une des séries que pour l’autre, notre ignorance à ce sujet étant absolue.

Share on Twitter Share on Facebook