4. Abschnitt.

Abschnitt 4: Gleichung ersten Grades (Hau-Rechnung).

Die Haurechnung oder die Lösung von Gleichungen ersten Grades. No. 24–38.

Die Nummern 24–34 sind Zahlengleichungen; die vier letzten Aufgaben beziehen sich auf Teilung des Getreidemasses auit. Die Unbekannte heisst hau, d. h. Haufen, also eine unbestimmte Menge, analog dem cosa irgend ein Ding der italienischen Mathematiker der Renaissancezeit. Über die Lösung der Gleichungen entstand ein Streit zwischen J. Rodet, dem bekannten französischen Orientalisten, speziell Sanskritisten und M. Cantor, in dem, wie so häufig beide recht und beide unrecht haben. Rodet meint, die Ägypter hatten die regula falsi benutzt, Cantor sagt, sie hätten gerade so wie wir operiert. C. selbst bemerkt ganz richtig, dass bei den Gleichungen ersten Grades beide Methoden schwer zu unterscheiden sind. Ich nehme das erste Beispiel:

Haufe, sein Siebentel, sein Ganzes, es macht 19; also x7 + x = 19. Es ist schwer zu sagen, rechnet der Ägypter x(17 + 1) = x 87 = 19; x7 = 198 · x = 198 · 7 oder setzt er probeweise für x 7, wonach er als Summe 8 statt 19 bekommt und somit den Proportionalitätsfaktor 198 erhält und damit seinen Probewert multipliziert.

Die Rechnung sieht so aus:

/ . 7 . 8 / 14 2 /. 214 18 (n. b. 198 das ist der Proport.-Faktor)
/ 17 1 /.. 16 / 18 1 /.. 412 14
12 4 / 4. 912

nun kommt die stehende Formel:

Symbol ȧrt mȧ cheper, tue wie folgt:
Der Hau 1612 18 (Probe) 17 : 214 18 Symbol (zusammen) 19.

Vom Beispiel No. 28 an kann man aber nicht mehr gut von einem unmittelbaren Probieren reden zum Beispiel No. 32: Es wird 1 13 14 multipliziert bis das Ergebnis 2 ist, d. h. es wird x ausgeklammert und mit 1 13 14 in 2 dividiert.

Unter den Beispielen sind einige recht komplizierte, z. B. No. 28 und sie liefert zugleich ein Beispiel für die Schwierigkeit der Entzifferung. Die Aufgabe lautet:

neb em iw ro chomt em ān met uta

23 im hinzugehen 13 im weggehen 10 sind aufzubewahren.

Gemeint ist: (x + 23x) - 13(x + 23x) = 10.

Die Rechnung ist falsch, das Resultat 9 ist richtig; die Probe zeigt, wie die Aufgabe gemeint ist. Noch komplizierter ist No. 29. Ein wahres Muster von Kompliziertheit und nicht minder von ägyptischer Bruchrechnung sind No. 31 und 33: Haufe sein 23, sein 12, sein 17, sein Ganzes, es beträgt 37. Es wird die Division mit 1 23 12 17 ganz direkt durchgeführt.

Die Aufgabe 30 übersetze ich abweichend von Eisenlohr und Cantor:

Wenn dir der Schreiber (id est Lehrer) sagt: 10 ist das Ergebnis von 23 und 110, lass mich den Grund hören.

Um die Division von 10 durch 23 + 110 auszuführen, wird dies zunächst mit 13 multipliziert, das gibt 92930; man muss dann noch 130 dividieren und findet zum Schluss 13123 als sogenannten Hau.

No. 35: Um die Masseinheit zu erreichen, bin ich dreimal genommen und 13 von mir zu mir, dann bin ich zur Einheit vervollständigt. Diese Aufgabe 3x + 13 x = 1 ist das textliche Vorbild zu einer Menge von eingekleideten Gleichungen, die sich noch bis heute in den Rechenbüchern finden. Die Einheit ist das Hequatmass. Die Verteilungsaufgaben der Fruchtmasse bedurften sämtlich einer genauen Revision, die durch Erman 1902 und Schack-Schackenburg 1904 vollzogen ist.

Arithmetische Reihe (Tunnu-Rechnung).

Es folgen dann zwei Aufgaben, die als »Tunnu«-Rechnung bezeichnet werden, zu denen sich sachlich noch Aufgaben aus einem späteren Abschnitt gesellen, der eine Anzahl praktischer Beispiele enthält und vielleicht einem zweiten Schülerheft entnommen ist. Von besonderer Bedeutung ist No. 40: Brode 100 an Personen 5; 17 der 3 ersten an die 2 letzten Personen, was ist der Unterschied? Die Rechnung lautet: Tue, wie folgt: (die stehende Formel) der Unterschied 512 / 23, 1712, 12, 612, 1 Symbol zusammen 60. Vervielfältige diese Zahlen 23, 1712 etc. mit 123, das gibt dann 3813, 2816 ... zusammen 100.

Hier haben wir a) Gleichungen mit mehreren Unbekannten, b) die arithmetische Reihe, c) unzweifelhaft regula falsi. Ist der Tunnus d und der Anteil des letzten a, so bekommen die Personen 4d + a, 3d + a, 2d + a, d + a, a, und es ist: 9d + 3a = 7 (d + a); also 2d = 11a; d = 512 a. Es wird nun als falscher Ansatz a = 1 gesetzt, also d = 512 und da 100 = 60 + 23 · 60 ist, mit dem Proportionalitätsfaktor 123 multipliziert.

Hierhin gehört No. 64, die darauf hinausläuft eine arithmetische Reihe von 10 Gliedern zu bilden, deren Summe 10 und deren Differenz 18 ist. Es wird wieder zuerst das höchste, das letzte Glied bestimmt. Wir haben aus den bekannten Formeln:

s = n2(a + u) und u = a + (n-1)d; u = sn + (n - 1)d2,

d. h. also um das letzte Glied zu bestimmen, muss man den Durchschnittswert sn bilden und dazu (n-1) · d2 addieren, und ganz genau so verfährt der ägyptische Rechner.

Ich teile in der Mitte, gibt 1; ziehe 1 von 10 ab Rest 9, halbiere den Unterschied: 116, nimm es 9 mal, gibt 12, 116, lege es hinzu zum Durchschnittswert, gibt für u 1 12 116 etc. Ja, m. H. hier ist jeder Zweifel an der Kenntnis der allgemeinen Formeln ausgeschlossen.

Geometrische Reihe.

Und das gleiche gilt von der geometrischen Reihe. Der fünfte und zugleich letzte Teil enthält unter No. 62–84 eine Sammlung praktischer Beispiele, welche sich auf Landwirtschaft beziehen, Aichung von Bierkrügen, Futterverbrauch auf dem Geflügelhof und in Stallungen, Mehlverbrauch beim Backen, Lohnzahlung etc. Solche Aufgaben kommen auch in Tempelrechnungen sehr vielfach vor, denn die ägyptischen Priesterschaften hatten wie die mittelalterlichen Klöster grosse Ausgaben um das Volk an den Festtagen zu beköstigen. Mitten hinein schneit dann die Aufgabe 19. Die Aufgabe war nach Eisenlohr völlig rätselhaft. Es ist von einer Sutek (vielleicht Leiter? unsre Skala) die Rede, deren Sprossen

7, 49, 343, 2401, 16807

sind, und bei diesen Zahlen stehen Worte, welche bedeuten: Person, Katze, Maus, Gersten, Ähre, Mass.

Eisenlohr meinte, dass dies die Namen der 5 ersten Potenzen seien, während doch erst ganz vor kurzem bei Heron dynamo-dynamis für die 4. Potenz konstatiert ist.

Die Rechnung sieht so aus:

7
/. 2801 49
/.. 5602 343
/... 11204 2402
Symbol 19607 16807
   Symbol 19607

Das Rätsel hat Rodet in der schon erwähnten Abhandlung gelöst. Er fand dieselbe Aufgabe bei Leonardo Pisano um 1200 in dem epochemachenden Liber abaci, das aus Afrika stammt, aus Bugia, einer Pisaner Handelsstation, der westlichsten von Nordafrika.

Die Aufgabe heisst: 7 Personen haben je 7 Katzen, jede Katze frisst 7 Mäuse, jede Maus 7 Ähren Gerste, jede Ähre bringt 7 Mass ? ist die Summe, und sie ist berechnet nach der richtigen Formel:

an - 1a - 1 · a, da 75 - 17 - 1 = 16806 : 6 = 2801 ist

wo also die Multiplikation mit 7 gut ägyptisch vollzogen ist und durch Addition geprüft wird. Nicht vielleicht, wie Cantor meint, sondern unzweifelhaft war die Summenformel der geometrischen Reihe um 2000 v. Chr. bekannt. Wir sehen über 3000, wahrscheinlich über 4000 Jahre hat sich die Aufgabe in den Schulen Afrikas gehalten, ein Seitenstück zur Bruchrechnung.

Aber die arithmetischen Kenntnisse der alten Ägypter gingen noch weit darüber hinaus, was Cantor freilich auch bei der 2. Auflage vom Dezember 1893 nicht wissen konnte. In den von Griffith 1897 herausgegebenen mathematischen Papyri der Funde Petries in Kahun fand sich das erste Beispiel einer quadratischen Gleichung.

Share on Twitter Share on Facebook