Das Zahlensystem der Ägypter ist dekadisch. Die Ziffern sind für die Einer Striche Symbol, für die Zehner Symbol, für die Hunderter Symbol, für die Tausender Symbol, für die Zehntausender Symbol, für die Hunderttausender Symbol. Die grössere Zahl geht der kleineren vor, z. B.
gleich 212,635.
In den Stundenangaben und Datierungen werden die Einer auch noch durch horizontale Striche bezeichnet.
In monumentalen Einmeisselungen stehen die Zahlen auch vertikal, wie z. B. die Zahl 7551, die in der Schenkungsurkunde auf der Tempelmauer von Edfu vorkommt. Für 5 kommt auch in hieroglyphischen Ziffern Symbol vor.
Die lautliche Bezeichnung, soweit sie feststeht, ist für 1 wa, für zwei meist die Dualform vom Stamme sen Bruder, nämlich der eins. Die 5, dua, heisst Hand, wie im Indischen und Mexikanischen und wird auch meist durch eine Hand determiniert. Umgekehrt wird z. B. Handwerker dargestellt durch fünf Striche, dahinter Mann und Frau. Die 10 (met) wird durch den Phallus Symbol geschrieben, der denselben Lautwert met hat. Das Zeichen für 100 (vielleicht schent), eine Schlinge, ist vom zusammengerollten Seil von 100 Ellen hergenommen, 1000 (cha) ist die so häufige Lotosblume, deba, d. i. 10000, ist Finger, Zeichen und Wort für 100000 ist die Kaulquappe hafen, welche nach der Überschwemmung im Nilschlamme in ungeheuren Mengen vorkommt. Als der Handel im Delta ausserordentlich entwickelt war, im neuen Reiche gab es auch Zeichen für Millionen und Zehnmillionen. Die Zeichen kommen schon früher vor, sie werden dann aber meist, wie das griechische Myrioi, für unendlich gebraucht. Der Gott verspricht dem Könige nicht Millionen Jahre, sondern ewiges Leben.
Es gab seit der ältesten Zeit ein Zeichen für 0 nen, nichts.
Nen ist zugleich die grammatische Negation, die Hieroglyphen Symbol stellen vielleicht eine im Gleichgewicht befindliche Wage, vielleicht zwei gleichmässig ausgestreckte Arme, Symbol auch Schulter, Arme und abwinkende Hände. Determiniert wird nen durch das Zeichen des Bösen, richtiger des Ungemütlichen, ein Vogel, der unserem Spatz ähnelt Symbol. Ob die 0 vor der Ptolemäer Zeit als Zahl angesehen wurde, steht nicht fest, als Ziffer war sie überflüssig, und als Zahl der Zahlenreihe, wie wir gleich hervorheben, nicht möglich.
Die Ordinalzahlen werden gebildet durch Anhängen der Silbe nu Symbol an die Kardinalzahl und später durch Vorsetzen von mh vollmachen, also der die 5 vollmacht, d. i. eben der fünfte; im Koptischen die ausschliessliche Ableitung.
Zu der aufsteigenden Zahlenreihe bildeten die Ägypter auch die absteigende 1/2, 1/3, 1/4 usw., indem sie über die Kardinalzahl die Partikel ro Symbol setzten. (Eine Ausnahme bildet 1/2, welches mit Hälfte Symbol geschrieben wird.) Ro ist das Zeichen für Mund, das zur Präposition geworden ist und in etwas hinein etc. bedeutet, auch distributiv pro Tag etc. bedeutet. Im Hieratischen ist es zu einem einfachen Punkt verkürzt worden, es sind ganz ähnliche Gedanken, und wunderbarerweise auch im Hieratischen dieselbe Bezeichnung wie bei den Indern, die die absteigende Reihe als Reihe der negativen Zahlen gebildet haben. Der Ägypter fasst 3 auf als 3 × 1 und dem entspricht die Zahl, welche dreimal genommen 1 gibt. Mit dieser Auffassung der Zahlenreihe hängt die so eigentümliche und gänzlich missverstandene ägyptische Bruchrechnung, mit der der Papyrus Ames beginnt, aufs innigste zusammen. Da heisst es z. B. noch in einer grossen Abhandlung von 1895 eines um die Geschichte der Mathematik sehr verdienten Philologen, nämlich bei F. Hultsch: die Ägypter kannten keine gemeine Bruchrechnung, sondern nur eine Teilung in der Einheitsreihe. Die Rechnung war für die Ägypter erst zu Ende geführt, wenn sie den Quotienten in Zahlen ihrer Zahlenreihe, d. h. in ganze Zahlen oder Stammbrüche aufgelöst hatten. Ihre Zahlenreihe war ihnen so geläufig, wie uns die unsrige und wie wir scheinbar immer mit Brüchen, mit konstantem Nenner 10 rechnen und die Resultate nur übersehen, wenn sie uns in Dezimalbruchform vorliegen, so rechneten die Ägypter scheinbar nur mit Brüchen, mit dem konstanten Zähler 1. Dass aber dem Ägypter gemeine Bruchrechnung samt Generalnenner, reduzieren, erweitern etc., völlig vertraut war, geht aus den Papyri Ames, denen vom Kahun, von Achmin aufs klarste hervor. Sie scheuten nicht einmal vor Doppelbrüchen. — Eine Ausnahme bildet der Bruch 2/3, der auch bei den Griechen sein eigenes Zeichen hat. Er heisst neb Symbol oder Symbol. Griffith fasst ihn als 1/1½. Hier war die Zusammensetzung aus ½ und 1/6 eben jedem ägyptischem Kinde geläufig. Aber ich bin hier schon bei der Division. Die Addition wird bezeichnet durch vorwärtsschreitende Beine Symbol, die Subtraktion durch 2 rückwärtsschreitende Beine Symbol, es werden auch verba gebraucht, die addieren, hinzulegen, hinzufügen bezw. zurückkehren, ausgehen bedeuten; bei mehreren Summanden wird die Summe durch eine eigene Hieroglyphe bezeichnet: Symbol, eine Papyrusrolle, das Determinativ für alles Abstrakte.
Arithmetik der Ägypter, Abschnitt 1 des Papyrus Ames.
Die Multiplikation wird durch das Wort uah = vervielfältigen, eingeleitet; die Division durch nis = teilen, richtiger künden, klarmachen. Die Division war wie die unsrige ein Einschliessen in Grenzen und wird durch Multiplikation und Kenntnis des 1 × 1 erleichtert. Die 1 × 1-Tabelle kommt im Ames nicht vor, sie wird als bekannt vorausgesetzt. Hultsch hat das kleine 1 × 1 nach den Andeutungen des Ames rekonstruiert. Der Papyrus lehrt zunächst die Bruchrechnung und beginnt mit der Zerlegung der Brüche von 23 bis 299 in Stammbrüche inklusiv 23.
Regeln werden weder hier noch sonst irgendwo im Buche angegeben; eine Ausnahme macht nur die eine Regel in N. 61a: 23 zu machen von einem Bruch (gebrochenen Teil). Wenn dir gesagt ist: Was ist 23 von 15, so nimm seine Hälfte und seinen 6. Teil, das ist sein 23: Also ist es zu machen in gleicher Weise für jeden gebrochenen Teil, welcher vorkommt. Cantor hat den Schlusssatz missverstanden, er meint, er bezieht sich darauf, dass 23 durch irgend einen andern Stammbruch ersetzt werden könne, während die Verallgemeinerung sich auf 15 bezieht, C. sieht hierin die allgemeine Vorschrift 2u, wo u eine ungerade Zahl ist, zu zerlegen in 1(u/2 + 1/2) + 1(u/2 + 1/2)u, die unzweifelhaft, darin hat er recht, zur Zeit des Papyrus bekannt war. Aber es werden auch andere Formeln für das an sich unbestimmte Problem benutzt, z. B. wenn p und q ungerade Zahlen sind, also 12(p + q) eine ganze Zahl n: 2p·q = 1pn + 1qn. Meist wird dafür gesorgt, dass der erste Bruch einen geraden Nenner hat, weil dies die nötige Zusammenfassung bei grösseren Dividenden als 2 erleichtert. Die Tabelle enthält nur ungerade Zahlen, weil eben den Ägyptern die Reduktion völlig bekannt war.
Zerlegung in Partialbrüche.
Ferner wird möglichst dafür gesorgt, dass die Zahl der Stammbrüche so klein als möglich. Im Papyrus Ames werden als Anfangsnenner ausser 2 und 3 nur teilbare Anfangsnenner der Reihe zugelassen, nur einmal kommt 5 vor. Im Papyrus von Achmin ist diese Beschränkung aufgehoben, um die Zahl der Stammbrüche zu verkleinern. Jede Zerlegung ist von einer Probe, smot — der Beweis genannt, begleitet. Der Beweis, d. h. die Probe, zeigt hier schon, wie völlig die Beherrschung der Bruchrechnung war, z. B. 217 (Anfang der 2. Kolumne) nis son chent, d. h. mache deutlich 2 durch, z. B. 17, hieroglyphisch: (nis son chent met sefech)
Verdeutliche 217: 112 151 168
smot 113 112 13 14 (NB. 1712 i. 113 + 112)
Der Beweis — smot Symbol genannt —, besteht darin, dass gezeigt wird, dass 112 der 17te Teil von 113 112 oder 114 16 ist und von dem was noch an 2 fehlt, nämlich 13 + 14, der 17te Teil 151 und 168 ist.
Abschnitt 2: Zerlegung in Zehn-Teile.
Es folgen dann als 2. Abschnitt die Dezimalteilungen der Zahlen von 1–9, eingekleidet als Verteilung von Broten; die Dezimalteilung war besonders für die Feldteilung wichtig, 1 3 6 7 8 9 werden geteilt, da 210, 410 und 510 schon in der vorigen Tabelle vorkommen. Nur das letzte der Beispiele ist vollständig erhalten: Geben Brote 9 an Personen 10. Verfahre wie geschieht, vervielfältige 23 15 130 mit 10.
Brot hot statt t Symbol. Um mit 10 zu multiplizieren wird mit 2 multipliziert, das zweifache mit 2, und das wieder mit 2 und das zweifach und achtfache addiert.
/..
Symbol
(123 110 130 als zweifaches von 23 15 130)
(4.) 3 12 110
/
(8.) 7 15
Zusammen 9 Brote, welche es sind; für zusammen Symbol
M. H. es dauert eine ganze Weile bis wir die Zerfällungen in 2 und 4 ausführen. Der Ägypter zerlegt 43 in 113 und 25 + 115 = 13 + 215 und 215 = 110 + 130.
Die Ägypter wussten in ihren Tabellen vorzüglich Bescheid, genau wie wir mit unserm Einmaleins. Wenn man sich übt, findet man, dass der Unterschied mit unsern Methoden keineswegs so gross ist.
3: Sequem- oder Ergänzungsrechnung.
Die Tabelle verlangt nun vielfach Subtraktion einer Anzahl von Brüchen und Division einer Zahl durch eine Summe von Brüchen. Dazu dient die im 3. Abschnitt gegebene Sequemrechnung — von quem = vollenden — das Causativ also: Vollende, ergänze; quem allein kommt auch vor in No. 21 b, 22 b, 37 e 1.
Ich greife die beiden letzten Beispiele heraus, No. 22:
sequem mā neb ro sa em uā
(30 ist m' b Symbol;
statt mā ist richtiger mi)
Ergänze | 23 | 130 | zu 1. |
20 | 1 |
(zu ergänzen ist der gemeinsame Nenner 30, die Ägypter beherrschten die Bruchrechnung vollständig, samt Gleichnamigmachung, Kürzen etc.) lege zu seinen Unterschied, nämlich 9; Zeichen des Unterschieds ist Symbol gelesen chomt, vervielfältige die Zahl 30 zu vollenden 9.
30 | |
110 3 | |
15 6 | |
——— | |
zusammen | 9 |
Es sollen hier 23 und 130 zu 1 ergänzt werden; es sind auf den Nenner 30 gebracht 20 und 1 Dreissigstel; es fehlen also 9 und 930 sind dann zerlegt in 110 und 15 womit das Resultat eben aussprechbar, d. h. deutlich für den Ägypter gemacht ist.
No. 23:
1/4 1/8 1/10 1/30 1/45 sequem em neb
cher em uah hi—f ir neb
und 19 140 im Hinzufügen zu ihm macht 23.
Als Generalnenner wird 45 gewählt und die Zähler der Doppelbrüche werden in Stammbruchform geschrieben, wobei noch 18 hinzugefügt wird.
14 | 18 | 19 | 110 | 130 | 140 | 145 | 13 | Symbol | 1 | |
1114 | 512 | 18 | 5 | 412 | 112 | 118 | 1 | 15 | macht | 1 |