III – LA PROBABILITÉ DANS LES SCIENCES PHYSIQUES.

Arrivons maintenant aux problèmes qui se rapportent à ce que j’ai appelé plus haut le second degré d’ignorance ; ce sont ceux où l’on connaît la loi, mais où on ignore l’état initial du système. Je pourrais multiplier les exemples, je n’en prendrai qu’un : Quelle est la distribution actuelle probable des petites planètes sur le zodiaque ?

Nous savons qu’elles obéissent aux lois de Képler ; nous pouvons même, sans rien changer à la nature du problème, supposer que leurs orbites sont toutes circulaires et situées dans un même plan et que nous le sachions. En revanche, nous ignorons absolument quelle était leur distribution initiale. Cependant nous n’hésitons pas à affirmer qu’aujourd’hui cette distribution est à peu près uniforme. Pourquoi ?

Soit b la longitude d’une petite planète à l’époque initiale, c’est-à-dire à l’époque zéro ; soit a son moyen mouvement ; sa longitude à l’époque actuelle, c’est-à-dire à l’époque t, sera at + b. Dire que la distribution actuelle est uniforme, c’est dire que la valeur moyenne des sinus et des cosinus des multiples de at + b est nulle. Pourquoi l’affirmons-nous ?

Représentons chaque petite planète par un point dans un plan, à savoir par le point dont les coordonnées sont précisément a et b. Tous ces points représentatifs seront contenus dans une certaine région du plan, mais comme ils sont très nombreux, cette région paraîtra criblée de points. Nous ne savons rien d’ailleurs de la distribution de ces points.

Que fait-on quand on veut appliquer le calcul des probabilités à une semblable question ? Quelle est la probabilité pour qu’un ou plusieurs points représentatifs se trouvent dans telle partie du plan ? Dans notre ignorance nous sommes réduits à faire une hypothèse arbitraire. Pour faire comprendre la nature de cette hypothèse, qu’on me permette d’employer au lieu d’une formule mathématique, une image grossière, mais concrète. Imaginons qu’on ait répandu sur la surface de notre plan une matière fictive dont la densité sera variable mais variera d’une manière continue. Nous conviendrons alors de dire que le nombre probable de points représentatifs qui se trouvent sur une partie du plan est proportionnel à la quantité de matière fictive qui s’y trouve. Si l’on a alors deux régions du plan de même étendue, les probabilités pour qu’un point représentatif de l’une de nos petites planètes se trouve dans l’une ou dans l’autre de ces régions seront entre elles comme les densités moyennes de la matière fictive dans l’une et l’autre région.

Voilà donc deux distributions, l’une réelle, où les points représentatifs sont très nombreux, très serrés, mais discrets comme les molécules de la matière dans l’hypothèse atomique ; l’autre, éloignée de la réalité, où nos points représentatifs sont remplacés par une matière fictive continue. Cette dernière, nous savons qu’elle ne peut être réelle, mais notre ignorance nous condamne à l’adopter.

Si encore nous avions quelque idée de la distribution réelle des points représentatifs, nous pourrions nous arranger pour que, dans une région de quelque étendue, la densité de cette matière fictive continue soit à peu près proportionnelle au nombre de points représentatifs, ou si l’on veut, des atomes qui sont contenus dans cette région. Cela même est impossible et notre ignorance est si grande que nous sommes forcés de choisir arbitrairement la fonction qui définit la densité de notre matière fictive. Nous serons astreints seulement à une hypothèse à laquelle nous ne pourrions guère nous soustraire, nous supposerons que cette fonction est continue. Cela suffit, comme nous allons le voir, pour nous permettre une conclusion.

Quelle est à l’instant t la distribution probable des petites planètes ? Ou bien, quelle est la valeur probable du sinus de la longitude, à l’instant t, c’est-à-dire de sin(at + b) ? Nous avons fait au début une convention arbitraire, mais, si nous l’adoptons, cette valeur probable est entièrement définie. Décomposons le plan en éléments de surface. Considérons la valeur de sin(at + b) au centre de chacun de ces éléments ; multiplions cette valeur par la surface de l’élément et par la densité correspondante de la matière fictive ; faisons ensuite la somme pour tous les éléments du plan. Cette somme sera, par définition, la valeur moyenne probable cherchée, qui se trouvera ainsi exprimée par une intégrale double.

On peut croire d’abord que cette valeur moyenne dépendra du choix de la fonction φ qui définit la densité de la matière fictive et que comme cette fonction φ est arbitraire, nous pourrons, suivant le choix arbitraire que nous ferons, obtenir une valeur moyenne quelconque. Il n’en est rien.

Un calcul simple montre que notre intégrale double décroît très rapidement quand t augmente.

Ainsi, je ne savais trop quelle hypothèse faire au sujet de la probabilité de telle ou telle distribution initiale ; mais, quelle que soit l’hypothèse faite, le résultat sera le même et c’est ce qui me tire d’embarras.

Quelle que soit la fonction φ la valeur moyenne tend vers zéro quand t augmente, et comme les petites planètes ont certainement accompli un très grand nombre de révolutions, je puis affirmer que cette valeur moyenne est très petite.

Je puis choisir φ comme je le veux, sauf une restriction toutefois : cette fonction doit être continue ; et, en effet, au point de vue de la probabilité subjective, le choix d’une fonction discontinue aurait été déraisonnable ; quelle raison pourrai-je avoir, par exemple, de supposer que la longitude initiale peut être égale à 0 juste, mais qu’elle ne peut être comprise entre 0°et 1°?

Mais la difficulté reparaît si l’on se place au point de vue de la probabilité objective ; si l’on passe de notre distribution imaginaire où la matière fictive était supposée continue à la distribution réelle où nos points représentatifs forment comme des atomes discrets.

La valeur moyenne de sin(at + b) sera représentée tout simplement par

1/n Σ sin(at + b).

n étant le nombre des petites planètes. Au lieu d’une intégrale double portant sur une fonction continue, nous avons une somme de termes discrets. Et pourtant personne ne doutera sérieusement que cette valeur moyenne ne soit effectivement très petite.

C’est que, nos points représentatifs étant très serrés, notre somme discrète différera en général très peu d’une intégrale.

Une intégrale est la limite vers laquelle tend une somme de termes quand le nombre de ces termes croît indéfiniment. Si les termes sont très nombreux, la somme différera très peu de sa limite, c’est-à-dire de l’intégrale, et ce que j’ai dit de cette dernière sera encore vrai de la somme elle-même.

Il y a des cas d’exception néanmoins. Si, par exemple, l’on avait pour toutes les petites planètes :

b = (π/2) - at,

toutes les planètes à l’instant t se trouveraient avoir pour longitude π/2 et la valeur moyenne serait évidemment égale à 1. Pour cela, il faudrait qu’à l’époque 0, les petites planètes eussent été toutes placées sur une sorte de spirale d’une forme particulière à spires extrêmement serrées. Tout le monde jugera qu’une pareille distribution initiale est extrêmement improbable (et, même en la supposant réalisée, la distribution ne serait pas uniforme à l’époque actuelle, par exemple le 1er janvier 1900, mais elle le redeviendrait quelques années plus tard).

Toutefois, pourquoi jugeons-nous cette distribution initiale improbable ? Il est nécessaire de l’expliquer, car, si nous n’avions pas de raison de rejeter comme invraisemblable cette hypothèse saugrenue, tout s’écroulerait et nous ne pourrions plus rien affirmer au sujet de la probabilité de telle ou telle distribution actuelle.

Ce que nous invoquerons, c’est encore le principe de raison suffisante, auquel il faut toujours revenir. Nous pourrions admettre qu’à l’origine les planètes étaient distribuées à peu près en ligne droite ; nous pourrions admettre qu’elles étaient irrégulièrement distribuées ; mais il nous semble qu’il n’y a pas de raison suffisante pour que la cause inconnue qui leur a donné naissance ait agi suivant une courbe si régulière et pourtant si compliquée, et qui paraîtrait précisément avoir été choisie exprès pour que la distribution actuelle ne fût pas uniforme.

Share on Twitter Share on Facebook